ABC351G题解

考虑动态 dp 的套路,先树剖一下,令 \(son(x)\) 为点 \(x\) 的重儿子。 \(g_x=\prod\limits_{u\in C(x)\land u\neq son(x)}f_u\)

于是有 \(f_x=f_{son(x)}g_x+a_x\)

于是 \(\begin{bmatrix}f_x&1\end{bmatrix}=\begin{bmatrix}f_{son(x)}&1\end{bmatrix}\begin{bmatrix}g_x&0\\ a_x&1\end{bmatrix}\)

然后直接线段树维护矩阵乘法就行了。

不懂的可以做一下 P4719

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

#define int ll

const int N = 2e5 + 5, p = 998244353;
int dfn[N], top[N], dn[N], fa[N], son[N], sz[N], a[N], c[N], f[N], g[N], g2[N], ts, n;
bool zz[N];

vector<int> e[N];
struct M
{
    int a[2][2];
    M operator*(M x)
    {
        M y; memset(y.a, 0, sizeof y.a);
        for(int i = 0; i < 2; i ++) for(int j = 0; j < 2; j ++) for(int k = 0; k < 2; k ++)
            (y.a[i][k] += a[i][j] * x.a[j][k]) %= p;
        return y;
    }
};

struct sgt
{
    M a[N << 2];
    void pu(int x) {a[x] = a[x << 1 | 1] * a[x << 1];}
    void upd(int q, int l, int r, int x, M v)
    {
        if(l == r) return a[x] = v, void();
        int mid = l + r >> 1;
        if(mid >= q) upd(q, l, mid, x << 1, v);
        else upd(q, mid + 1, r, x << 1 | 1, v);
        pu(x);
    }
    M qry(int ql, int qr, int l, int r, int x)
    {
        if(ql <= l && r <= qr) return a[x];
        int mid = l + r >> 1;
        if(mid < ql) return qry(ql, qr, mid + 1, r, x << 1 | 1);
        if(mid >= qr) return qry(ql, qr, l, mid, x << 1);
        return qry(ql, qr, mid + 1, r, x << 1 | 1) * qry(ql, qr, l, mid, x << 1);
    }
}t;

void dfs1(int x, int fa)
{
    sz[x] = 1;
    ::fa[x] = fa;
    f[x] = 1;
    for(int i : e[x])
    {
        dfs1(i, x);
        f[x] = f[x] * f[i] % p;
        sz[x] += sz[i];
        if(sz[i] >= sz[son[x]]) son[x] = i;
    }
    if(e[x].empty()) f[x] = 0;
    f[x] = (f[x] + a[x]) % p;
    zz[x] = f[x] == 0;
}

void dfs2(int x, int tp)
{
    dfn[x] = ++ts;
    top[x] = tp;
    dn[tp] = x;
    if(son[x]) dfs2(son[x], tp);
    g[x] = g2[x] = 1;
    for(int i : e[x])
        if(i != son[x])
        {
            dfs2(i, i);
            c[x] += !f[i];
            g[x] = g[x] * f[i] % p;
            if(f[i]) g2[x] = g2[x] * f[i] % p;
        }
    if(e[x].empty()) g[x] = g2[x] = 0;
    t.upd(dfn[x], 1, n, 1, {g[x], 0, a[x], 1});
}

int qpow(int a, int b)
{
    if(!b) return 1;
    return ((b & 1) ? a : 1ll) * qpow(a * a % p, b >> 1) % p;
}

void upd(int u, int v)
{
    M x = t.qry(dfn[u], dfn[u], 1, n, 1);
    x.a[1][0] = v;
    t.upd(dfn[u], 1, n, 1, x);
    while(fa[top[u]])
    {
        u = top[u];
        M y = t.qry(dfn[u], dfn[dn[u]], 1, n, 1);
        int nf = y.a[1][0];
        if(nf && zz[u]) c[fa[u]] --, zz[u] = 0;
        else if(nf == 0 && !zz[u]) c[fa[u]] ++, zz[u] = 1;
        M z = t.qry(dfn[fa[u]], dfn[fa[u]], 1, n, 1);
        if(f[u]) g2[fa[u]] = qpow(f[u], p - 2) * g2[fa[u]] % p;
        if(c[fa[u]]) g[fa[u]] = 0;
        else
        {
            g2[fa[u]] = g2[fa[u]] * nf % p;
            g[fa[u]] = g2[fa[u]];
        }
        f[u] = nf;
        z.a[0][0] = g[fa[u]];
        t.upd(dfn[fa[u]], 1, n, 1, z);
        u = fa[u];
    }
}

signed main()
{
    ios::sync_with_stdio(0);cin.tie(0);
    int q;
    cin >> n >> q;
    for(int i = 2; i <= n; i ++)
    {
        int x; cin >> x;
        e[x].push_back(i);
    }
    for(int i = 1; i <= n; i ++) cin >> a[i];
    dfs1(1, 0);
    dfs2(1, 1);
    while(q --)
    {
        int x, v; cin >> x >> v;
        upd(x, v);
        cout << t.qry(dfn[1], dfn[dn[1]], 1, n, 1).a[1][0] << "\n";
    }

    return 0;
}
posted @ 2024-04-27 22:39  adam01  阅读(47)  评论(0)    收藏  举报