C. Tyler and Strings
C. Tyler and Strings
1.思路
对于矩阵中的每一个元素\((i,j)\),假设它在前\(i - 1\)行出现\(q\)次,在前\(j - 1\)列出现\(p\)次,产生的总贡献为:
\[q * x_i - \sum_{k = 1}^{q}{x_k} + p * y_i - \sum_{k = 1}^{p}{y_k}
\]
所以我们只需要预处理出下标的前缀和与当前数的出现次数就行
#include <bits/stdc++.h>
#define PII pair<int,int>
#define LL long long
#define fi first
#define se second
#define debug(a) cout<<#a<<"="<<a<<endl;
#define all(x) (x).begin(),(x).end()
#define pb push_back
#define sz(x) (int)x.size()
using namespace std;
int b[100010];
void solve()
{
int n, m;
cin >> n >> m;
int g[n + 5][m + 5];
LL ans = 0;
map<int,LL>x, y;
for(int i = 1; i <= n; i ++ ){
for(int j = 1; j <= m; j ++ ){
int t;
cin >> t;
g[i][j] = t;
ans += i *1ll* b[t] - x[t];
x[t] += i;
b[t] ++;
}
}
memset(b, 0, sizeof b);
for(int j = 1; j <= m; j ++ ){
for(int i = 1; i <= n; i ++ ){
int t = g[i][j];
ans += j *1ll* b[t] - y[t];
y[t] += j;
b[t] ++;
}
}
cout << ans << endl;
}
int main()
{
int test = 1;
// scanf("%d",&test);
while(test -- )
{
solve();
}
return 0;
}

浙公网安备 33010602011771号