【sklearn】【Decision Trees】【1.10】
1. ExtraTree: http://blog.csdn.net/xbmatrix/article/details/69488867?locationNum=10&fps=1
sklearn.tree | 含义 | 样例 |
tree.DecisionTreeClassifier | 决策树分类算法 |
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
import numpy as np
clf = DecisionTreeClassifier()
trainX = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2]]
trainY = [0,0,0,1,1,1]
testX = [[0,4],[1,4]]
clf.fit(trainX, trainY)
print clf.predict(testX)
output:
[0 1]
|
tree.DecisionTreeRegressor | 决策树回归算法 |
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeRegressor
import numpy as np
clf = DecisionTreeRegressor()
trainX = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2]]
trainY = [0,0,0,1,1,1]
testX = [[0,4],[1,4]]
clf.fit(trainX, trainY)
print clf.predict(testX)
output:
[ 0. 1.]
|
tree.ExtraTreeClassifier | 极端随机数分类算法 |
from sklearn.datasets import load_iris
from sklearn.tree import ExtraTreeClassifier
import numpy as np
clf = ExtraTreeClassifier()
trainX = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2]]
trainY = [0,0,0,1,1,1]
testX = [[0,4],[1,4]]
clf.fit(trainX, trainY)
print clf.predict(testX)
output:
[0 1]
|
tree.ExtraTreeRegressor | 极端随机数回归算法 |
from sklearn.datasets import load_iris
from sklearn.tree import ExtraTreeRegressor
import numpy as np
clf = ExtraTreeRegressor()
trainX = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2]]
trainY = [0,0,0,1,1,1]
testX = [[0,4],[1,4]]
clf.fit(trainX, trainY)
print clf.predict(testX)
output:
[ 0. 1.]
|
tree.export_graphviz | 导出一个DOT格式的决策树 |
from sklearn.datasets import load_iris
from sklearn import tree
clf = tree.DecisionTreeClassifier()
iris = load_iris()
clf = clf.fit(iris.data, iris.target)
tree.export_graphviz(clf, out_file='tree.dot')
|