【sklearn】【Support Vector Machines】【1.4】
1. SVM分类:http://blog.csdn.net/luoshixian099/article/details/51073885
2. SVM回归:http://blog.csdn.net/luoshixian099/article/details/51121767
3. LinearSVC、NuSVC、SVC区别:https://www.cnblogs.com/pinard/p/6117515.html
sklearn.svm | 含义 | 样例 |
svm.LinearSVC | 线性支持向量机(分类),使用liblinear |
from sklearn.svm import LinearSVC clf = LinearSVC(random_state=0) clf.fit([[0,1],[0,2],[0,3],[1,1],[1,2],[1,3]],[1,1,1,2,2,2]) print clf.predict([[1,10]]) output: [1] |
svm.linearSVR | 线性支持向量机(回归),使用liblinear |
from sklearn.svm import LinearSVR clf = LinearSVR(random_state=0) clf.fit([[0,0],[1,1],[2,2],[3,3]], [0,1,2,3]) print clf.predict([[100,100]]) output: [ 99.99880112] |
svm.NuSVC | 核函数支持向量机(分类),使用libsvm |
from sklearn.svm import NuSVC clf = NuSVC(random_state=0, kernel='linear') clf.fit([[0,1],[0,2],[0,3],[1,1],[1,2],[1,3]],[1,1,1,2,2,2]) print clf.predict([[1,10]]) output: [2] |
svm.NuSVR | 核函数支持向量机(回归),使用libsvm |
from sklearn.svm import NuSVR clf = NuSVR(kernel='linear') clf.fit([[0,0],[1,1],[2,2],[3,3]], [0,1,2,3]) print clf.predict([[100,100]]) output: [ 100.] |
svm.OneClassSVM | 单分类向量机,可用于利群点识别 |
from sklearn.svm import OneClassSVM clf = OneClassSVM(kernel='linear') clf.fit([[0,0],[1,1],[2,2],[3,3]]) print clf.predict([[0,3],[0,4]]) output: [-1. 1.] |
svm.SVC | 类似NuSVC,使用libsvm | |
svm.SVR | 类似NuSVR,使用libsvm | |
svm.l1_min_c | 计算一个C的下限值 | |