sklearn之Ordinary Least Squares(普通最小二乘法)
sklearn中普通最小二乘法实现样例:
1 import matplotlib.pyplot as plt 2 import numpy as np 3 from sklearn import datasets, linear_model 4 5 diabetes = datasets.load_diabetes() 6 diabetes_X = diabetes.data[:, np.newaxis, 2] 7 8 diabetes_X_train = diabetes_X[:-20] 9 diabetes_X_test = diabetes_X[-20:] 10 11 diabetes_y_train = diabetes.target[:-20] 12 diabetes_y_test = diabetes.target[-20:] 13 14 regr = linear_model.LinearRegression() 15 regr.fit(diabetes_X_train, diabetes_y_train) 16 17 print('Coefficients: \n', regr.coef_) 18 print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) 19 print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_X_test)) 20 21 plt.scatter(diabetes_X_test, diabetes_y_test, color='black') 22 plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) 23 24 plt.xticks(()) 25 plt.yticks(()) 26 plt.show()
运行结果如下: