LeetCode刷题日记 - 持续更新
Note: 进阶版本打家劫舍,考虑
nums[i], nums[i - 1], nums[i + 1],即相邻不能“偷”,原始数组通过累加得到新数组;对新数组进行动态规划即可;
代码可能有点小瑕疵,但是能够AC
class Solution:
def deleteAndEarn(self, nums: List[int]) -> int:
max_num = max(nums)
num_list = [0] * (max_num + 1)
for num in nums:
num_list[num] += num
dp = [0] * len(num_list)
for i in range(max_num + 1):
if i == 0:
dp[i] = num_list[i]
else:
dp[i] = max(dp[i - 1], dp[i - 2] + num_list[i])
return dp[max_num]
Note: 因为最小花费,则动态规划方程中,前一次可以选择不爬,前前一次则必须爬到当前位置,所以方程为:
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
n = len(cost)
dp = [0] * n
for i in range(n):
if i < 2:
dp[i] = cost[i]
else:
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
return min(dp[n - 1], dp[n - 2])
Note: 初始
i == 0 or j == 0表示在边界,仅有一种方法能到达,因此初始化为1;
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [[0] * n for _ in range(m)]
for i in range(m):
for j in range(n):
if i == 0:
dp[i][j] = 1
elif j == 0:
print(i, j)
dp[i][j] = 1
else:
dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
return dp[m - 1][n - 1]

浙公网安备 33010602011771号