TensorFlow 2.0 学习笔记--第三章 使用八股搭建神经网络
第三章 使用八股搭建神经网络
本章目标:
- 神经网络搭建八股
- iris代码复现
- MNIST数据集
- 训练MNIST数据集
- Fashion数据集
3.1 搭建网络八股 Sequential
用 Tensorflow API: tf.keras 搭建网络八股
-
六步法
importtrain, test# 指定训练集特征和标签model = tf.keras.models.Sequential# 逐层描述网络model.compile# 使用哪种优化器、损失函数、评测指标等model.fit# 训练过程,告知训练集输入特征标签,batch,迭代次数model.summray# 打印出网络结构和参数统计
-
model = tf.keras.models.Sequential([网络结构]) # 描述各层网络
网络结构举例:
-
拉直层:tf.keras.layers.Flatten()
-
全连接层:tf.keras.layers.Dense(神经元个数, activation="激活函数", kernel_regularizer=哪种正则化)
activation('可选字符串'): relu, softmax, sigmoid, tanh
kernel_regularizer可选: tf.keras.regularizers.l1(), tf.kers.regularizers.l2() -
卷积层:tf.keras.layers.Conv2D(filters=卷积核个数, kernel_size=卷积核尺寸, strides=卷积步长, padding="valid" or "same")
-
LSTM层:tf.keras.layers.LSTM()
-
-
model.compile(optimizer=优化器, loss=损失函数, metrics=['准确率'])
Optimizer可选:(使用左边字符串或右边函数形式,自定义学习率等)
'sgd'ortf.keras.optimizers.SGD(lr=学习率, momentum=动量参数)'adagrad'ortf.keras.optimizers.Adagrad(lr=学习率)'adadelta'ortf.keras.optimizers.Adadelta(lr=学习率)'adam'ortf.keras.optimizers.Adam(lr=学习率, beta_1=0.9, beta_2=0.999)
loss可选:
'mse'ortf,keras.losses.MeanSquaredError()'sparse_categorical_crossentropy'ortf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)# 在询问是否是原始输出,经过概率分布为False,没有经过概率分布直接输出为True
Metrics可选:
'accuracy': y_ 和 y 都是数值,如 y_=[1] y=[1]'categorical_accuracy': y_ 和 y 都是独热码(概率分布),如 y_=[0, 1, 0] y=[0.256, 0.695, 0.048]'sparse_categorical_accuracy': y_ 是数值,y 是独热码(概率分布),如 y_=[1] y=[0.256, 0.695, 0.048]
-
model.fit()
model.fit(训练集的输入特征, 训练集的标签, batch_size= , epocher= , validation_data=(测试集的输入特征,测试集的标签), validation_split=从训练集划分多少比例给测试集, validation_freq=多少次epoch测试一次)⭕
validation_data,validation_split二选其一 -
model.summary() # 打印出网络的结构和参数统计
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 3) 15 ================================================================= Total params: 15 Trainable params: 15 Non-trainable params: 0 _________________________________________________________________上述为一个4输入层,3输出层的网络。 (4 * 3 + 3 = 15)
-
p8_iris_sequential
import tensorflow as tf from sklearn import datasets import numpy as np x_train = datasets.load_iris().data y_train = datasets.load_iris().target np.random.seed(116) np.random.shuffle(x_train) np.random.seed(116) np.random.shuffle(y_train) tf.random.set_seed(116) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2()) ]) model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['sparse_categorical_accuracy']) model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20) model.summary() # 运行结果 # Epoch 498/500 # 4/4 [==============================] - 0s 1ms/step - loss: 0.3509 - sparse_categorical_accuracy: 0.9658 # Epoch 499/500 # 4/4 [==============================] - 0s 1ms/step - loss: 0.3691 - sparse_categorical_accuracy: 0.9306 # Epoch 500/500 # 4/4 [==============================] - 0s 14ms/step - loss: 0.3634 - sparse_categorical_accuracy: 0.9304 - val_loss: 0.3516 - val_sparse_categorical_accuracy: 0.8667 # Model: "sequential" # _________________________________________________________________ # Layer (type) Output Shape Param # # ================================================================= # dense (Dense) (None, 3) 15 # ================================================================= # Total params: 15 # Trainable params: 15 # Non-trainable params: 0 # _________________________________________________________________
3.2 搭建网络八股 class
-
用Tensorflow API: tf.keras 搭建网络八股
class MyModel(Model): # Model表示继承了TensorFlow的Model类 def __init__(self): super(MyModel, self).__init__() 定义网络结构块 def call(self, x): # x 为输入数据 调用网络结构块,实现前向传播 return y model = MyModel()__init__()定义所欲要网络结构块
call()写出前向传播 -
iris_class 代码
# 与iris_sequential不同之处 from tensorflow.keras.layers import Dense from tensorflow.keras import Model class IrisModel(Model): def __init__(self): super(IrisModel, self).__init__() self.d1 = Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2()) def call(self, x): y = self.d1(x) return y model = IrisModel() # 运行结果 # 同iris_Sequential
3.3 MNIST数据集:
提供6万张 28 * 28 像素点的 0~9 手写数字图片和标签,用于训练。
提供1万张 28 * 28 像素点的 0~9 手写数字图片和标签,用于测试。
-
导入MNIST数据集:
mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() -
作为输入特征,输入神经网络时,将数据拉伸为一维数组:
tf.keras.layers.Flatten() # [0 0 0 48 238 252 252 ... ... ... 253 186 12 0 0 0 0 0 0] -
可视化各个数据以及完整代码
import tensorflow as tf from matplotlib import pyplot as plt mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() # 可视化训练集输入特征的第一个元素 plt.imshow(x_train[0], cmap='gray') # 绘制灰度图 plt.show() # 打印出训练集输入特征的第一个元素 print("x_train[0]:\n", x_train[0]) # 打印出训练集标签的第一个元素 print("y_train[0]:\n", y_train[0]) # 打印出整个训练集输入特征形状 print("x_train.shape:\n", x_train.shape) # 打印出整个训练集标签的形状 print("y_train.shape:\n", y_train.shape) # 打印出整个测试集输入特征的形状 print("x_test.shape:\n", x_test.shape) # 打印出整个测试集标签的形状 print("y_test.shape:\n", y_test.shape) # 运行结果 # x_train[0]: # '一个二维数组' # y_train[0]: # 5 # x_train.shape: # (60000, 28, 28) # y_train.shape: # (60000,) # x_test.shape: # (10000, 28, 28) # y_test.shape: # (10000,)
💬 Codes 完整的Mnist手写数据集代码
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 # 数值变小后更利于神经网络的吸收
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(), # 将数据集拉伸为一维
tf.keras.layers.Dense(128, activation='relu'), # 第一个Dense是隐藏层
tf.keras.layers.Dense(10, activation='softmax') # 第二个Dense是输出层
])
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy']
)
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()
# 运行结果
# Epoch 1/5
# 2021-07-13 13:32:15.085136: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.10
# 1875/1875 [==============================] - 4s 2ms/step - loss: 0.4395 - sparse_categorical_accuracy: 0.8750 - val_loss: 0.1424 - val_sparse_categorical_accuracy: 0.9567
# Epoch 2/5
# 1875/1875 [==============================] - 4s 2ms/step - loss: 0.1232 - sparse_categorical_accuracy: 0.9626 - val_loss: 0.1036 - val_sparse_categorical_accuracy: 0.9679
# Epoch 3/5
# 1875/1875 [==============================] - 4s 2ms/step - loss: 0.0828 - sparse_categorical_accuracy: 0.9749 - val_loss: 0.0934 - val_sparse_categorical_accuracy: 0.9701
# Epoch 4/5
# 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0582 - sparse_categorical_accuracy: 0.9827 - val_loss: 0.0789 - val_sparse_categorical_accuracy: 0.9742
# Epoch 5/5
# 1875/1875 [==============================] - 4s 2ms/step - loss: 0.0432 - sparse_categorical_accuracy: 0.9870 - val_loss: 0.0768 - val_sparse_categorical_accuracy: 0.9767
# Model: "sequential"
# _________________________________________________________________
# Layer (type) Output Shape Param #
# =================================================================
# flatten (Flatten) (None, 784) 0
# _________________________________________________________________
# dense (Dense) (None, 128) 100480
# _________________________________________________________________
# dense_1 (Dense) (None, 10) 1290
# =================================================================
# Total params: 101,770
# Trainable params: 101,770
# Non-trainable params: 0
# _________________________________________________________________
# class
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import Model
class MnistModel(Model):
def __init__(self):
super(MnistModel, self).__init__()
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10, activation='softmax')
def call(self, x):
x = self.flatten(x)
x = self.d1(x)
y = self.d2(x)
return y
3.4 FASHION数据集:
提供6万张 28 * 28 像素点的衣裤等图片和标签,用于训练。
提供1万张 28 * 28 像素点的衣裤等图片和标签,用于测试。
-
导入FASHION数据集:
fashion = tf.keras.datasets.fashion_mnist (x_train, y_train), (x_test, y_test) = fashion.load_data()
💬 Codes
import tensorflow as tf
fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy']
)
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()
# 运行结果
# 记得自己动手 try

浙公网安备 33010602011771号