FWT 学习笔记

FWT学习笔记

好久以前写的,先粘上来

定义数组

\(n=2^k\)
\(A=[a_0,a_1,a_2,a_3,...,a_{n-1}]\)
\(A_0=[a_0,a_1,a_2,...,a_{\frac n 2-1}]\)
\(A_1=[a_{\frac n 2},a_{\frac n 2+1},..,a_{n-1}]\)
\(A_0\)为没有最高位的部分,\(A_1\)为有二进制最高位的部分
\(A\)可以用\(A=\{A_0,A_1\}\)表示

定义运算

\(A+B=[a_0+b_0,a_1+b_1,...,a_n+b_n]=\{A_0+B_0,A_1+B_1\}\)
\(A-B=[a_0-b_0,a_1-b_1,...,a_n-b_n]=\{A_0-B_0,A_1-B_1\}\)
\(A*B=[a_0*b_0,a_1*b_1,...,a_n*b_n]=\{A_0*B_0,A_1*B_1\}\)
\(A xor B=[\sum_{i xor j=0}a_i*a_j,\sum_{i xor j=1}a_i*a_j,...,\sum_{i xor j=n-1}a_i*a_j]\)
\(A and B=[\sum_{i and j=0}a_i*a_j,\sum_{iandj=1}a_i*a_j,...,\sum_{i and j=n-1}a_i*a_j]\)
\(A or B=[\sum_{i or j=0}a_i*a_j,\sum_{i or j=1}a_i*a_j,...,\sum_{i or j=n-1}a_i*a_j]\)

性质1

交换率、结合率均满足
\(Cxor(A+B)=CxorA+CxorB\)
\(Cand(A+B)=CandA+CandB\)
\(Cor(A+B)=CorA+CorB\)

性质2

由于\(n-1\)\(\frac n 2-1\)在二进制下相差一位的特殊性质
\(AxorB=\{A_0xorB_0\)+\(A_1xorB_1,A_0xorB_1\)+\(A_1xorB_0\}\)
\(AandB=\{A_0andB_0\)+\(A_0andB_1\)+\(A_1andB_0,A_1andB_1\}\)
\(AorB=\{A_0orB_0,A_oorB_1\)+\(A_1orB_0\)+\(A_1orB_1\}\)

定义FWT和IFWT

\(FWT(A)=A(n=1)\)
n>1时
xor:\(FWT(A)=\{FWT(A_0+A_1),FWT(A_0-A_1)\}\)
xor:\(DWT(A)=\{DWT(\frac {A_0+A_1} 2),DWT(\frac {A_0-A_1} 2)\}\)

and:\(FWT(A)=\{FWT(A_0+A_1),FWT(A_1)\}\)
and:\(DWT(A)=\{DWT(A_0-A_1),DWT(A_1)\}\)

or:\(FWT(A)=\{FWT(A_0),FWT(A_1+A_0)\}\)
or:\(DWT(A)=\{DWT(A_0),DWT(A_1-A_0)\}\)

这跟FFT递归树是一个道理的啊
FFT要分奇偶递归树先按最低位为0分两段
到FWT里啥顺序都行,reverse都不用了

性质

1.\(FWT(A\pm B)=FWT(A)\pm FWT(B) 线性性\)
2.\(FWT(A⊕B)=FWT(A)*FWT(B) (点乘)\)
3.\(DWT(FWT(A))=A\)

证明

代入一下再根据性质一化简一下,数学归纳法

模板

链接

posted @ 2017-02-16 17:37  _zwl  阅读(342)  评论(0编辑  收藏  举报