szkzyc小组国庆作业。

本文仅发布于此博客和作者的洛谷博客,不允许任何人以任何形式转载,无论是否标明出处及作者。


题目

选择题

  1. 方程\(x^2-10x+25=0\)有(\(\qquad\))个根.

A.0个\(\qquad\qquad\)B.1个\(\qquad\qquad\)C.2个\(\qquad\qquad\)D.3个


  1. 以下关于\(x\)的方程中,有(\(\qquad\))个是一元二次方程(\(m\)为参数).

\(\qquad\)\(x^2+x+1=0\)

\(\qquad\)\(x+\Large\frac{1}{x}\normalsize=3\)

\(\qquad\)\(mx^2=1\)

\(\qquad\)\(x^2+\sqrt{m+2}\space x-3m=0(m\geq-2)\)

\(\qquad\)\(\Large\frac{x^4}{x^2}\normalsize+2x+1=0\)

\(\qquad\)\(m^3(x^2+1)+m^2(x+3)-m(4x^2-1)=0(m\ne 0)\)

A.2个\(\qquad\qquad\)B.1个\(\qquad\qquad\)C.3个\(\qquad\qquad\)D.5个


  1. 已知关于\(x\)的方程\(x^2+4x+a\)有两个实根\(x_1\),\(x_2\),且\(2x_1-x_2=7\).求实数\(a\)的值(\(\qquad\)).

A.6\(\qquad\qquad\)B.0\(\qquad\qquad\)C.-5\(\qquad\qquad\)D.无法确定.


  1. 下列多项式中恒\(>0\)的有(\(\qquad\))个.

\(\qquad\)\(x^2+x+1\)

\(\qquad\)\(x^2-5x+\large\frac{24}{4}\)

\(\qquad\)\((k+1)x^2-(1-k^2)x+\large\frac{k^3-k^2-k+1}{4}\normalsize(k\geq -1)\)

\(\qquad\)\(x+3\sqrt{x-3}-2\quad(\sqrt{x-3}\text{有意义})\)

A.4个\(\qquad\qquad\)B.3个\(\qquad\qquad\)C.2个\(\qquad\qquad\)D.1个


  1. 下列选项中最小值最小的是(\(\qquad\)).

A.\(x^2+\large\frac{2\sqrt{10}}{5}\normalsize x+1\) \(\quad\) B.\(25x^2+100x+109\) \(\quad\) C.\(-x^2-2x+5\) \(\quad\) D.\(x^2+2x+\large\frac{114}{113}\)


  1. \(\alpha^2-3\alpha+1=0,\beta^2+6\beta+4=0\),则\(\large\frac{\alpha}{\beta}=\)\(\qquad\)).

A.\(-\frac{1}{2}\) \(\qquad\qquad\) B. \(2\text{或}-\frac{1}{2}\) \(\qquad\qquad\) C.\(-\frac{3}{4}\) \(\qquad\qquad\) D.ABC都不对.

\(\space\)

\(\space\)

填空题

  1. 解方程\(3x^2-5|x|-12=0\)。__________.

  1. 已知关于\(x\)的二次多项式\(4mx^2-12mx+11m+\frac{1}{2}\)的最小值为\(2\),则\(m=\) __________.

  1. 已知关于\(x\)的多项式\((m-1)x^2+2x+1\)没有最小值,则m的取值范围是__________.

  1. \(a^2-13a+1=0\)\(b^2-13b+1=0\),则\(\large\frac{a}{b}\normalsize+\large\frac{b}{a}=\) __________.

  1. \(x_1\)\(x_2\)为方程\(x^2-5x+3=0\)的两根。则\(\Large \frac{{x_1}^3+{x_2}^3}{{x_1}^2+{x_2}^2}\normalsize=\) __________.

  1. \(a,b\)是关于\(x\)的方程\(x^2+(p-2)x+1=0\)的两实根,则\((a^2+ap+1)(b^2+bp+1)=\) __________.

  1. 解不等式\(5x^2-11x+\frac{11}{2}\leq0\)。__________.

  1. 关于\(x^2-(m+1)x+3=0\)的两根满足\(|x_1|-3|x_2|=1\),则\(m\)的值为__________.

  1. 若关于\(x\)的方程\((a^2-1)\large(\frac{x+1}{x})^2\normalsize-(2a+3)\large\frac{x+1}{x}\normalsize+1=0\)有一个实数解,则\(a=\) __________.

  1. \(\alpha,\beta\)是方程\(2x^2+3x-1=0\)的两实根.请构造一个整系数方程,其两根分别为\(\alpha+\frac{1}{\beta},\beta+\frac{1}{\alpha}\).__________.

\(\space\)

\(\space\)

解答题

  1. 解方程:\(x^2+(5+4\sqrt3)x+18+10\sqrt3=0\).

\(\space\)

\(\space\)

\(\space\)

\(\space\)

\(\space\)


  1. 已知关于\(x\)的一元二次方程\(x^2-mx-2m=0\)有两实根\(x_1,x_2\)满足\({x_1}^2+{x_2}^2=12\).求\(m\)的值.

\(\space\)

\(\space\)

\(\space\)

\(\space\)

\(\space\)


  1. 已知\(10x^2-125x+100=0\)的根为\(a,b\),求代数式\(8a^3+8a^2b+10ab^3\)的值.

\(\space\)

\(\space\)

\(\space\)

\(\space\)

\(\space\)


  1. 已知\(m,n\)是方程\(x^2+8x+4=0\)的两根,则\(m^4+10m^3+6m^3n-5m^2-5mn+18\)的值是.

\(\space\)

\(\space\)

\(\space\)

\(\space\)

\(\space\)


  1. 解关于\(x\)的方程:\(ax(x-4)=-4b\).

\(\space\)

\(\space\)

\(\space\)

\(\space\)

\(\space\)


  1. 关于\(x\)的方程\(x^2-(2k-3)x+k^2+1=0\)有两个不相等的实根\(x_1\),\(x_2\)

    (1) 求\(k\)的范围.

    (2) 求证:\(x_1<0,x_2<0\).

    (3) 若\(x_1x_2-|x_1|-|x_2|=6\),求\(k\).

\(\space\)

\(\space\)

\(\space\)

\(\space\)

\(\space\)


\[\begin{array}{l} \\\\\\\\\\\\ \end{array} \]


答案

选择题答案

  1. C
  2. A
  3. C
  4. C
  5. D
  6. B

填空题答案

  1. \(x_{1,2}=\pm3\)
  2. \(\large\frac{3}{4}\)
  3. \(m\leq 1\)
  4. \(2\text{或}167\)
  5. \(\large\frac{80}{19}\)
  6. \(4\)
  7. \(\frac{11-\sqrt{11}}{10}\leq x\leq\frac{11+\sqrt{11}}{10}\)
  8. \(m=\large\frac{-2+2\sqrt{37}}{3}\normalsize\text{或}\large\frac{-4-2\sqrt{37}}{3}\)
  9. \(a=\pm1\text{或}-\large\frac{13}{12}\)
  10. \(2x^2-x-1=0\)

解答题答案

  1. \(\space\)

\[\begin{array}{l} x^2+5x+4\sqrt3\,x+18+10\sqrt3=0\\ (x^2+4\sqrt3\,x+12)+5(x+2\sqrt3\,)+6=0\\\\ \text{令}t=x+2\sqrt3.\\\\ \begin{aligned} t^2+5t+6&=0\\ (t+2)(t+3)&=0\\ \end{aligned}\\ t=-2\text{或}-3.\\ \\ \begin{aligned} \because x&=t-2\sqrt3\\ \therefore x&=-2-\sqrt3\text{或}-3-\sqrt3 \end{aligned} \end{array} \]

  1. \(\space\)

\[\begin{array}{l} x^2-mx-2m=0\\ \Delta=m^2+8m\\\\ \text{根据韦达定理,}\\ x_1+x_2=m\\ x_1x_2=-2m\\ \begin{aligned} \therefore{x_1}^2+{x_2}^2&=(x_1+x_2)^2-2x_1x_2\\ &=m^2+4m \end{aligned}\\\\ m^2+4m=12\\ (m+6)(m-2)=0\\ m=2\text{或}-6\\\\ \because\text{当}m=6\text{时,}\Delta<0\\ \therefore m=2 \end{array} \]

  1. \(\space\)

\[\begin{array}{l} \text{由韦达定理},\left\{\begin{array}{l} a+b=\frac{25}{2}\\ ab=10 \end{array}\right.\\ \therefore a^2+b^2=(a+b)^2-2ab=\frac{625}{4}-20=\frac{545}{4}\\ \begin{aligned} \therefore\text{原式}&=4(2a^2(a+b)+\frac{5ab(b^2)}{2})\\ &=4(25a^2+25b^2)\\ &=\frac{25\times545}{4}\times4=13625. \end{aligned} \end{array} \]

  1. \(\space\)

\[\begin{array}{l} \because \text{原式}=m^4+10m^3+6m^2(mn)-5m(m+n)+16\\ \text{由韦达定理}\quad m+n=-8,mn=4\\ \begin{aligned} \therefore\text{原式}&=m^4+10m^3+24m^2-(-8)\cdot5\cdot m+18\\ &=m^4+10m^3+24m+40m+18\\ &=(x^2+8x+4)(x^2+2x+4)+2\\ &=2. \end{aligned} \end{array} \]

  1. \(\space\)

\[\begin{array}{l} \text{整理,得}ax^2-4ax+4b=0\\\\ \text{当}a=0\text{时,}\left\{ \begin{aligned} \begin{array}{l} b=0&\qquad x\text{取任意值}\\ b\neq0&\qquad \text{无解} \end{array} \end{aligned} \right.\\ \text{当}a\neq0\text{时,}\left\{ \begin{aligned} \begin{array}{l} \Delta=16a^2-16ab=16a(a-b)\\\\ \text{当}a>0\text{时,}\left\{ \begin{aligned} \begin{array}{l} a<b,&\text{无解}\\ a>b,&x_{1,2}=\large\frac{4a\pm4\sqrt{a^2-ab}}{2a}\normalsize=\large\frac{2a\pm2\sqrt{a^2-ab}}{a}\normalsize\\ a=b,&x_1=x_2=2 \end{array} \end{aligned} \right.\\\\ \text{当}a<0\text{时,}\left\{ \begin{aligned} \begin{array}{l} a>b,&\text{无解}\\ a<b,&x_{1,2}=\large\frac{2a\pm2\sqrt{a^2-ab}}{a}\\ a=b,&x_1=x_2=2 \end{array} \end{aligned} \right. \end{array} \end{aligned} \right. \end{array} \]

  1. \(\space\)

\[\begin{array}{l} \begin{aligned} (1)\quad\\ &\begin{aligned} \Delta&=(4k^2-12k+9)-4k^2-4\\ &=5-12k>0 \end{aligned}\\ &\therefore k<\frac{5}{12} \\ (2)\quad\\ &\because k<\frac{5}{12}\\ &\therefore 2k<\frac{5}{6}\\ &\therefore 2k-3<0\\ \text{又}&\because\left\{\begin{array}{l} x_1+x_2=2k-3\\ x_1x_2=k^2+1 \end{array}\right.\\ &\therefore\left\{\begin{array}{l} x_1+x_2<0\\ x_1x_2>0 \end{array}\right.\\ &\therefore x_1<0,x_2<0\\ &\text{证毕.} \\ (3)\quad\\ &\because\text{由}(2)\text{可知}x_1<0,x_2<0\\ &\therefore\text{原式可化为:}x_1x_2+x_1+x_2=6\\ &\therefore k^2+1+2k-3=6\\ &\therefore k^2+2k-8=0\\ &\text{即}(k-2)(k+4)=0\\ &\therefore k_1=2,k_2=-4\\ \text{又}&\because k<\frac{5}{12}\\ &\therefore k=-4. \end{aligned} \end{array} \]

posted @ 2023-01-12 21:44  abv3Rpkg  阅读(30)  评论(0)    收藏  举报