cf1027

Codeforces Round 1027 (Div. 3)

A.

先处理前导零,再检查是否是平方数

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> PII;
const int N = 1e5 + 10;
const int mod = 1e7 + 9;
#define rep(i, a, b) for (int i = a; i < b; i++)

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    ll t;
    cin >> t;
    while (t--)
    {
        ll n, k;
        cin >> n >> k;
        string s;
        cin>>s;
        ll x=0,y=0;
        for(auto t:s)
        {
            if(t=='0')
            {
                x++;
            }
            else{
                y++;
            }
        }
        ll res=abs(x-y)/2;
        if(res>k)
        {
            cout<<"NO"<<endl;
        }
        else{
             if((k-res)%2==1)
             {
                 cout<<"NO"<<endl;
             }
             else{
                cout<<"YES"<<endl;
             }
              
        }
    }

    return 0;
}

B.

先将一定会配对的数目算出来,即(cnt1-cnt0)/2,剩下的均可以实现不配对,如果需要配对,需要特判k的个数

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> PII;
const int N = 1e5 + 10;
const int mod = 1e7 + 9;
#define rep(i, a, b) for (int i = a; i < b; i++)

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    ll t;
    cin >> t;
    while (t--)
    {
        ll n, k;
        cin >> n >> k;
        string s;
        cin>>s;
        ll x=0,y=0;
        for(auto t:s)
        {
            if(t=='0')
            {
                x++;
            }
            else{
                y++;
            }
        }
        ll res=abs(x-y)/2;
        if(res>k)
        {
            cout<<"NO"<<endl;
        }
        else{
             if((k-res)%2==1)
             {
                 cout<<"NO"<<endl;
             }
             else{
                cout<<"YES"<<endl;
             }
              
        }
    }

    return 0;
}

C.

序列已经排序好,从左往右模拟即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> PII;
const int N = 1e5 + 10;
const int mod = 1e7 + 9;
#define rep(i,a,b) for(int i=a;i<b;i++)

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    ll t;
    cin>>t;
    while (t--)
    {
        ll n;
        cin>>n;
        vector<ll>a(n+1);
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
        }
        ll pre=a[1],ans=1;
        for(int i=2;i<=n;i++)
        {
            if(pre+1<a[i])
            {
                ans++;
                pre=a[i];
            }          
        }
        cout<<ans<<endl;
    }
    return 0;
}

D.

使用multiset将元素升序排序,枚举每个点,判断删除该点后最小的面积

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
typedef long long i64;
const int N = 1e5 + 10;
const int mod = 1e7 + 9;
const int maxn = 0x3f3f3f3f;
const int minn = 0xc0c0c0c0;
const int inf = 99999999;
void solve() {
    int n;
    std::cin >> n;
    std::vector<i64> x(n), y(n);
    std::multiset<i64> X, Y;
    for (int i = 0; i < n; ++ i) {
    	std::cin >> x[i] >> y[i];
    	X.insert(x[i]);
    	Y.insert(y[i]);
    }

    if (n == 1) {
    	std::cout << 1 << "\n";
    	return;
    }

    i64 ans = (*X.rbegin() - *X.begin() + 1) * (*Y.rbegin() - *Y.begin() + 1);
    for (int i = 0; i < n; ++ i) {
    	X.extract(x[i]);
    	Y.extract(y[i]);
    	i64 a = *X.rbegin() - *X.begin() + 1, b = *Y.rbegin() - *Y.begin() + 1;
    	i64 sum = a * b;
    	if (sum < n) {
    		ans = std::min({ans, sum + a, sum + b});
    	} else {
    		ans = std::min(ans, sum);
    	}

    	X.insert(x[i]);
    	Y.insert(y[i]);
    }

    std::cout << ans << "\n";
}

int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    i64 t;
    cin>>t;
    while(t--)
    {
    	solve();
    }
    return 0;
}

E.

树的dp

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> PII;
const int N = 1e5 + 10;
const int mod = 1e7 + 9;
#define rep(i, a, b) for (int i = a; i < b; i++)

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    ll t;
    cin >> t;
    while (t--)
    {
        ll n;
        cin >> n;
        vector<ll> a(n + 1);
        for (int i = 1; i <= n; i++)
        {
            cin >> a[i];
        }
        vector<vector<ll>> adj(n + 1);
        for (int i = 1; i <= n - 1; i++)
        {
            ll u, v;
            cin >> u >> v;
            adj[u].push_back(v);
            adj[v].push_back(u);
        }
        vector<bool> vis(n + 1, false);
        vector<ll> dp(n + 1, 0);
        dp[1] = a[1];
        vector<ll> fat(n + 1, 0);
        auto dfs = [&](auto &self, ll u, ll fa) -> void
        {
            vis[u] = true;
            fat[u] = fa;
            for (auto v : adj[u])
            {
                if (vis[v])
                {
                    continue;
                }

                if (u == 1)
                {
                    dp[v] = a[v];
                }
                else
                {
                    dp[v] = max(a[v], a[v] - a[u] + dp[fat[u]]);
                }
                self(self, v, u);
            }
        };
        dfs(dfs, 1, 0);
        for (int i = 1; i <= n; ++i)
        {
            cout << dp[i] << " ";
        }
        cout << endl;
    }

    return 0;
}

F.

x转化为y,双方同时除去公约数,在判断xx,yy是否由大于k的因数组成,如果有输出-1,否则通过递归,找到分解所需的最小次数

#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
//#define int unsigned long long
typedef pair<int,int> PII;
const int N=1e6+5,mod=1e9+7,inf=0x3f3f3f3f;
 
int st[N],f[N];
int _=1;
int k;
int gcd(int a,int b){
    return b?gcd(b,a%b):a;
}
int sol(int x){
    if (x==1) return 0;
    if (x<=k) return 1;
    if (st[x]==_) return f[x];
    int ans=inf;
    for (int i=2;i<=x/i;i++){
        if (x%i==0){
            ans=min(ans,sol(x/i)+sol(i));
        }
    }
    st[x]=_;
    f[x]=ans;
    return ans;
}
void solve(){
    int x,y;
    cin>>x>>y>>k;
    int z=gcd(x,y);
    x/=z,y/=z;
    int xx=x,yy=y;
    for (int i=2;i<=x/i;i++){
        if (x%i==0){
            if (i>k){
                cout<<-1<<endl;
                return;
            }
            while (x%i==0) x/=i;
        }
    }
    if (x>k){
        cout<<-1<<endl;
        return;
    }
    for (int i=2;i<=y/i;i++){
        if (y%i==0){
            if (i>k){
                cout<<-1<<endl;
                return;
            }
            while (y%i==0) y/=i;
        }
    }
    if (y>k){
        cout<<-1<<endl;
        return;
    }
    cout<<sol(xx)+sol(yy)<<endl;
}
 
signed main(){
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    memset(st,-1,sizeof st);
    cin>>_;
    while (_--)
        solve();
    return 0;
}
posted @ 2025-06-12 11:37  cloudbless  阅读(9)  评论(0)    收藏  举报