SciTech-Mathmatics-Physics-Particle Physics-Election+Photon+Quantum: Parallel Universe + Superposition + Wave-Particle Duality.
SciTech-Mathmatics-Quantum
LaTex: https://tex.stackexchange.com/questions/483996/automatically-sized-bra-ket-in-quantum-physics
Complex
Euler
Gauss
Hilbert Space
\(Superposition\ States\) VS \(Binary\ Logic\)
the \(\large Fundamental\ Difference\) between \(Binary\ Logic\) and \(Superposition\ States\).
two ideas of the micro world.
Schrodinger's Cat
-
Traditional Interpretation: Either live(1) or die(-1),
-
Superposition Interpretation of Quantum Mechanics: Superposition of the two quantum states.
$\large f = 50\% \cdot quantum(Left) + 50\% \cdot quantum(Right) $
this equation seems a little bit like the Expectation Equation of Probability Theory.
hypotheses, \(\large quantum(Left) = +1 ; quantum(Rightl)=-1\)
then $\large f = 50\% \cdot (+1) + 50\% \cdot (-1) = 0 $ -
(Schrödinger equation, Schrodinger wave equation)
Dirac's Bra & Ket
Superposition Equation of Quantum States
-
\(\large Linear\ Combination\ Form(Bra \& Ket) Expression\) of Superposition of Quantum Mechanics:
Using Advanced Linear Algebra to analysis the Quantum Mechanics.
\(\large \begin{array}{lll} \\ Hypotheses, \text{ There are totally } n\ kinds \text{ of } observed\ outcomes. \\ \text{ the Superposition state }before\ observation \text{ is }: \end{array}\)
\(\large \begin{array}{rll} \\ SuperPosition_c &=& c_1 \cdot quantum(1) + c_2 \cdot quantum(2) + \cdots + c_n \cdot quantum(n) \\ \end{array}\) -
Dirac's normalized Vector Form of Quantum Mechanics:
-
each state of superposition can be expressed as a vector \(\large ket\), written as \(\large \ket \phi\)
then the Superposition state can also be written as:
\(\large \begin{array}{rll} \\ SuperPosition_c &=& c_1 \cdot \ket {E_1}+ c_2 \cdot \ket {E_2{E_1}} + \cdots + c_n \cdot \ket {E_n} \\ \end{array}\) -
Inner products of two vectors "bra" $\large \bra \Psi $ and "ket" $\large \ket \Phi $
\(\large \begin{array}{rll} \\ \bra{\Psi} \ket{\Phi} \\ \bra \psi \ket \phi \\ \end{array}\) -
泛函空间,矢量vector就是 函数。
那么,假设我们的函数全都是幂函数(或可用Taylor Equation逼近),形式如下。
则:\(\large \begin{array}{rll} \\ f &=& c_0 \cdot x^0 + c_1 \cdot x^1 + \cdots + c_n \cdot x^n + \cdots \\ e^x &=& \frac{1}{1} \cdot x^0 + \frac{1}{1!} \cdot x^1 + \frac{1}{2!} \cdot x^2 + \cdots + \frac{1}{n!} \cdot x^n + \cdots\\ \end{array}\)
-
Probability : Expectation
Wave-Particle Duality: Double-slit Experiment
https://brilliant.org/wiki/double-slit-experiment/

The Maxwell Equations:
- Election, Substances, Particle's Brown Movements
- AZD(Absolute Zero Degree): Each kind of particle has its wave when above AZD.
- The Maxwell Equations:
\(\large \begin{array}{llll} \\ (\ i\ ) & \bm{\nabla} \cdot \bm{D} &= 4 \pi \rho_{f} \ , & \text{静电荷产生电场};\\ (ii\ ) & \bm{\nabla}\cdot \bm{B} &= 0 \ , \text{静磁场磁通量总和为0, 不存在单磁极} \\ (iii) & \bm{\nabla} \times \bm{E} &= -\frac{\partial\bm{B}}{\partial t}\ , \text{变化的电场感生变化磁场,有函数关系} \\ (iv\ ) & \bm{\nabla} \times \bm{H} &= \bm{J}_f + \frac{\partial\bm{D}}{\partial t}\ , \text{变化的磁场感生变化电场,有函数关系} \\ \end{array}\)
Hilbert Space
TED Speech:
HARTMUT NEVEN - Leader of Quantum Computing Lab of Google
APRIL2024, VANCOUVER BC.
Parallel Universe: 平行宇宙
Superposition: 叠加态
Traditional Computation:
- Binary Logic of 0s and 1s
- Applications: today's computers like: your laptop and servers of Google Data-Center.
Quantum Computer:
- replaced these binary logics with the Law of Quantum Physics

浙公网安备 33010602011771号