编程-动态规划

动态规划五部曲

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给你 n ,请计算 F(n) 。

 示例 1:

输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

 

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        int dp[3] = {0};
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            dp[2] = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = dp[2];
        }
        return dp[2];
    }
};

 

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶
class Solution {
public:
    int climbStairs(int n) {

        if (n <= 0) {
            return 0;
        }

        if (n == 1) {
            return 1;
        }

        if (n == 2) {
            return 2;
        }
        int res[3] = {0};
        res[0] = 1;
        res[1] = 1;

        for (int i = 2; i <= n; ++i) {
            res[2] = res[0] + res[1];
            res[0] = res[1];
            res[1] = res[2];
        }
        return res[2];

    }
};

 

746. 使用最小花费爬楼梯

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

 示例 1:

输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。

 示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {

        int n = cost.size();

        if (n <= 2) {
            return 0;
        }

        int res[3] = {0};

        for (int i = 2; i <= n; ++i) {
            res[2] = min(res[0] + cost[i - 2], res[1] + cost[i - 1]);
            res[0] = res[1];
            res[1] = res[2];
        }
        return res[2];
    }
};

 

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0; // 默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};

 

 

62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

 

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

 

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> vec(m, vector<int>(n, 1));
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                vec[i][j] =   vec[i - 1][j] + vec[i][j - 1]; 
            }
        }
        return vec[m - 1][n - 1];
    }
};

  

53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

 示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [0]
输出:0

示例 4:

输入:nums = [-1]
输出:-1

示例 5:

输入:nums = [-100000]
输出:-100000

 提示:

  • 1 <= nums.length <= 3 * 104
  • -105 <= nums[i] <= 105

 

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;

        int dp[2] = {0};
        int result = dp [0] = nums[0];

        for (int i = 1; i < nums.size(); ++i) {
            //dp[1] = max(dp[0] + nums[i], nums[i]);
            //result = max(dp[1], result);
            //dp[0] = dp[1];
            result = max(dp[1] = max(dp[0] + nums[i], nums[i]), result);
            dp [0] = dp[1];
        }
        return result;

    }
};

 

198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

 

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

 

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

 

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.empty()) {
            return 0;
        }
        int size = nums.size();
        if (size == 1) {
            return nums[0];
        }
        vector<int> dp = vector<int>(size, 0);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < size; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[size - 1];
    }
};

  

 

213. 打家劫舍 II

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

 

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [0]
输出:0

 

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 1000

 

class Solution {
public:
    int rob(vector<int>& nums) {
        int size = nums.size();
        if (size == 0) return 0;
        if (size == 1) return nums[0];
        if (size == 2) return max(nums[0], nums[1]);

        vector<int> dp = vector<int>(size, 0);
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);

        vector<int> dp2 = vector<int>(size, 0);
        dp2[1] = nums[1];
        dp2[2] = max(nums[1], nums[2]);

        for (int i = 2; i < size - 1; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
            if (i > 2 && i < size - 2)
                dp2[i] = max(dp2[i - 2] + nums[i], dp2[i - 1]);
        }
        
        dp[size - 1] = max(dp2[size - 3] + nums[size - 1], dp[size - 2]);
        return dp[size - 1];
    }
};

 

337. 打家劫舍 III

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

示例 1:

输入: [3,2,3,null,3,null,1]

     3
    / \
   2   3
    \   \ 
     3   1

输出: 7 
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.

示例 2:

输入: [3,4,5,1,3,null,1]

     3
    / \
   4   5
  / \   \ 
 1   3   1

输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
class Solution {
public:
    unordered_map <TreeNode*, int> f, g;

    void dfs(TreeNode* node) {
        if (!node) {
            return;
        }
        dfs(node->left);
        dfs(node->right);
        f[node] = node->val + g[node->left] + g[node->right];
        g[node] = max(f[node->left], g[node->left]) + max(f[node->right], g[node->right]);
    }

    int rob(TreeNode* root) {
        dfs(root);
        return max(f[root], g[root]);
    }
};

  

 

 

各种算法,包括动态规划

https://github.com/youngyangyang04/leetcode-master

 

posted @ 2021-04-02 11:16  aaronwell  阅读(129)  评论(0)    收藏  举报