sklearn中的朴素贝叶斯模型及其应用
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() pred = gnb.fit(iris.data, iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum())
150 6
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import MultinomialNB gnb = MultinomialNB() pred = gnb.fit(iris.data, iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum())
150 7
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import BernoulliNB gnb = BernoulliNB() pred = gnb.fit(iris.data, iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum())
150 100
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score
gnb = GaussianNB()
acores = cross_val_score(gnb, iris.data, iris.target, cv=10)
print("Accuracy:%.3f"%acores.mean())
Accuracy:0.953
from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import cross_val_score
gnb = BernoulliNB()
acores = cross_val_score(gnb, iris.data, iris.target, cv=10)
print("Accuracy:%.3f"%acores.mean())
Accuracy:0.333
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import cross_val_score
gnb = MultinomialNB()
acores = cross_val_score(gnb, iris.data, iris.target, cv=10)
print("Accuracy:%.3f"%acores.mean())
Accuracy:0.953
浙公网安备 33010602011771号