第九次作业
from sklearn.datasets import load_sample_image from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np china = load_sample_image("china.jpg")#读取图片 plt.imshow(china) plt.show() print(china.shape)#观察图片存放数据特点 image = china[::3, ::3] #降低分辨率 X = image .reshape(-1,3) plt.imshow(image) plt.show() print(image.shape,X.shape) n_colors =64 #(256,256,256) model = KMeans(n_colors) #k均值聚类算法,将图片中所有的颜色值做聚类 labels = model.fit_predict(X) #每个点的颜色分类,0-63 colors = model.cluster_centers_ #64个聚类中心,颜色值 new_image=colors[labels] #用聚类中心的颜色代替原来的颜色值 new_image=new_image.reshape(image.shape) #形成新的照片 plt.imshow(new_image.astype(np.uint8)) plt.show()import matplotlib.image as img img.imsave('F:\\china.jpg',china) img.imsave('F:\\china_zip.jpg',image)




import matplotlib.image
浙公网安备 33010602011771号