第四周作业

import numpy as np
import pandas as pd

inputfile = 'C:\\Users\\Administrator\\Desktop\\data\\GoodsOrder.csv'
data = pd.read_csv(inputfile,encoding='gbk')
data.info()

data = data['id']
description = [data.count(),data.min(),data.max()]
description = pd.DataFrame(description, index=['Count','Min','Max']).T
print('描述性统计结果:\n',np.round(description))

 

import pandas as pd
inputfile = 'C:\\Users\\Administrator\\Desktop\\data\\GoodsOrder.csv'
data = pd.read_csv(inputfile,encoding='gbk')
group = data.groupby(['Goods']).count().reset_index()
sorted=group.sort_values('id',ascending=False)
print('销量排行前10的商品的销量:\n',sorted[:10])
print('20信计1 22 徐韵晴')

import matplotlib.pyplot as plt
x = sorted[:10]['Goods']
y = sorted[:10]['id']
plt.figure(figsize=(8,4))
plt.barh(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('销量')
plt.ylabel('商品的类别')
plt.title('商品的销量TOP10')
plt.savefig('C:\\Users\\Administrator\\Desktop\\tmp\\top10.png')
plt.show()

data_nums = data.shape[0]
for idnex, row in sorted[:10].iterrows():
    print(row['Goods'],row['id'],row['id']/data_nums)

import pandas as pd
inputfile1 = 'C:\\Users\\Administrator\\Desktop\\data\\GoodsOrder.csv'
inputfile2 = 'C:\\Users\\Administrator\\Desktop\\data\\GoodsTypes.csv'
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort['index']

sort_links = pd.merge(sort,types)  # 合并两个datafreame 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1 = 'C:\\Users\\Administrator\\Desktop\\tmp\\percent.csv'
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')  # 保存结果

# 画饼图展示每类商品销量占比
import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8, 6))  # 设置画布大小   
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('20信计1 22 徐韵晴\n每类商品销量占比')  # 设置标题
plt.savefig('C:\\Users\\Administrator\\Desktop\\tmp\\persent.png')  # 把图片以.png格式保存
plt.show()

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2 = 'C:\\Users\\Administrator\\Desktop\\tmp\\child_percent.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("20信计1 22 徐韵晴\n非酒精饮料内部各商品的销量占比")  # 设置标题
plt.axis('equal')
plt.savefig('C:\\Users\\Administrator\\Desktop\\tmp\\child_persent.png')  # 保存图形
plt.show()  # 展示图形

# -*- coding: utf-8 -*-

# 代码8-5 数据转换

import pandas as pd
inputfile='C:\\Users\\Administrator\\Desktop\\data\\GoodsOrder.csv'
data = pd.read_csv(inputfile,encoding = 'gbk')

# 根据id对“Goods”列合并,并使用“,”将各商品隔开
data['Goods'] = data['Goods'].apply(lambda x:','+x)
data = data.groupby('id').sum().reset_index()

# 对合并的商品列转换数据格式
data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
data_list = list(data['Goods'])

# 分割商品名为每个元素
data_translation = []
for i in data_list:
    p = i[0].split(',')
    data_translation.append(p)
print('数据转换结果的前5个元素:\n', data_translation[0:5])

# 先筛选“西点”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '西点']  # 挑选商品类别为“西点”并排序
child_nums = selected['id'].sum()  # 对所有的“西点”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('西点内部商品的销量及其占比:\n',selected)
outfile2 = 'C:\\Users\\Administrator\\Desktop\\tmp\\child_percent1.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示西点内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("20信计1 22 徐韵晴\n西点内部各商品的销量占比")  # 设置标题
plt.axis('equal')
plt.savefig('C:\\Users\\Administrator\\Desktop\\tmp\\child_persent1.png')  # 保存图形
plt.show()  # 展示图形

 

# 代码8-6 构建关联规则模型

from numpy import *
 
def loadDataSet():
    return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
            ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]
 
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))     
    
# 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:   # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData = {}  # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support  
    return retList, supportData
 
def calSupport(D, Ck, min_support):
    dict_sup = {}
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = {}
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
# 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData
 
# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
     

 

 

 

 

 

 

posted @ 2023-03-19 22:17  徐韵晴  阅读(15)  评论(0)    收藏  举报