Netty服务端的启动源码分析

ServerBootstrap的构造:

 1 public class ServerBootstrap extends AbstractBootstrap<ServerBootstrap, ServerChannel> {
 2     private static final InternalLogger logger = InternalLoggerFactory.getInstance(ServerBootstrap.class);
 3     private final Map<ChannelOption<?>, Object> childOptions = new LinkedHashMap();
 4     private final Map<AttributeKey<?>, Object> childAttrs = new LinkedHashMap();
 5     private final ServerBootstrapConfig config = new ServerBootstrapConfig(this);
 6     private volatile EventLoopGroup childGroup;
 7     private volatile ChannelHandler childHandler;
 8 
 9     public ServerBootstrap() {
10     }
11     ......
12 }

隐式地执行了父类的无参构造:

 1 public abstract class AbstractBootstrap<B extends AbstractBootstrap<B, C>, C extends Channel> implements Cloneable {
 2     volatile EventLoopGroup group;
 3     private volatile ChannelFactory<? extends C> channelFactory;
 4     private volatile SocketAddress localAddress;
 5     private final Map<ChannelOption<?>, Object> options = new LinkedHashMap();
 6     private final Map<AttributeKey<?>, Object> attrs = new LinkedHashMap();
 7     private volatile ChannelHandler handler;
 8 
 9     AbstractBootstrap() {
10     }
11     ......
12 }

只是初始化了几个容器成员

在ServerBootstrap创建后,需要调用group方法,绑定EventLoopGroup,有关EventLoopGroup的创建在我之前博客中写过:Netty中NioEventLoopGroup的创建源码分析


ServerBootstrap的group方法:

 1 public ServerBootstrap group(EventLoopGroup group) {
 2     return this.group(group, group);
 3 }
 4 
 5 public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {
 6     super.group(parentGroup);
 7     if (childGroup == null) {
 8         throw new NullPointerException("childGroup");
 9     } else if (this.childGroup != null) {
10         throw new IllegalStateException("childGroup set already");
11     } else {
12         this.childGroup = childGroup;
13         return this;
14     }
15 }

首先调用父类的group方法绑定parentGroup:

 1 public B group(EventLoopGroup group) {
 2     if (group == null) {
 3         throw new NullPointerException("group");
 4     } else if (this.group != null) {
 5         throw new IllegalStateException("group set already");
 6     } else {
 7         this.group = group;
 8         return this.self();
 9     }
10 }
11 
12 private B self() {
13     return this;
14 }

将传入的parentGroup绑定给AbstractBootstrap的group成员,将childGroup绑定给ServerBootstrap的childGroup成员。
group的绑定仅仅是交给了成员保存。

再来看看ServerBootstrap的channel方法,,是在AbstractBootstrap中实现的:

1 public B channel(Class<? extends C> channelClass) {
2     if (channelClass == null) {
3         throw new NullPointerException("channelClass");
4     } else {
5         return this.channelFactory((io.netty.channel.ChannelFactory)(new ReflectiveChannelFactory(channelClass)));
6     }
7 }

使用channelClass构建了一个ReflectiveChannelFactory对象:

 1 public class ReflectiveChannelFactory<T extends Channel> implements ChannelFactory<T> {
 2     private final Class<? extends T> clazz;
 3 
 4     public ReflectiveChannelFactory(Class<? extends T> clazz) {
 5         if (clazz == null) {
 6             throw new NullPointerException("clazz");
 7         } else {
 8             this.clazz = clazz;
 9         }
10     }
11 
12     public T newChannel() {
13         try {
14             return (Channel)this.clazz.getConstructor().newInstance();
15         } catch (Throwable var2) {
16             throw new ChannelException("Unable to create Channel from class " + this.clazz, var2);
17         }
18     }
19 
20     public String toString() {
21         return StringUtil.simpleClassName(this.clazz) + ".class";
22     }
23 }

可以看到ReflectiveChannelFactory的作用就是通过反射机制,产生clazz的实例(这里以NioServerSocketChannel为例)。

在创建完ReflectiveChannelFactory对象后, 调用channelFactory方法:

 1 public B channelFactory(io.netty.channel.ChannelFactory<? extends C> channelFactory) {
 2     return this.channelFactory((ChannelFactory)channelFactory);
 3 }
 4 
 5 public B channelFactory(ChannelFactory<? extends C> channelFactory) {
 6     if (channelFactory == null) {
 7         throw new NullPointerException("channelFactory");
 8     } else if (this.channelFactory != null) {
 9         throw new IllegalStateException("channelFactory set already");
10     } else {
11         this.channelFactory = channelFactory;
12         return this.self();
13     }
14 }

将刚才创建的ReflectiveChannelFactory对象交给channelFactory成员,用于后续服务端NioServerSocketChannel的创建。

再来看ServerBootstrap的childHandler方法:

1 public ServerBootstrap childHandler(ChannelHandler childHandler) {
2     if (childHandler == null) {
3         throw new NullPointerException("childHandler");
4     } else {
5         this.childHandler = childHandler;
6         return this;
7     }
8 }

还是交给了childHandler成员保存,可以看到上述这一系列的操作,都是为了填充ServerBootstrap,而ServerBootstrap真正的启动是在bind时:
ServerBootstrap的bind方法,在AbstractBootstrap中实现:

 1 public ChannelFuture bind(int inetPort) {
 2     return this.bind(new InetSocketAddress(inetPort));
 3 }
 4 
 5 public ChannelFuture bind(String inetHost, int inetPort) {
 6 return this.bind(SocketUtils.socketAddress(inetHost, inetPort));
 7 }
 8 
 9 public ChannelFuture bind(InetAddress inetHost, int inetPort) {
10     return this.bind(new InetSocketAddress(inetHost, inetPort));
11 }
12 
13 public ChannelFuture bind(SocketAddress localAddress) {
14     this.validate();
15     if (localAddress == null) {
16         throw new NullPointerException("localAddress");
17     } else {
18         return this.doBind(localAddress);
19     }
20 }

可以看到首先调用了ServerBootstrap的validate方法,:

 1 public ServerBootstrap validate() {
 2     super.validate();
 3     if (this.childHandler == null) {
 4         throw new IllegalStateException("childHandler not set");
 5     } else {
 6         if (this.childGroup == null) {
 7             logger.warn("childGroup is not set. Using parentGroup instead.");
 8             this.childGroup = this.config.group();
 9         }
10     
11         return this;
12     }
13 }

先调用了AbstractBootstrap的validate方法:

1 public B validate() {
2     if (this.group == null) {
3         throw new IllegalStateException("group not set");
4     } else if (this.channelFactory == null) {
5         throw new IllegalStateException("channel or channelFactory not set");
6     } else {
7         return this.self();
8     }
9 }


这个方法就是用来检查是否绑定了group和channel以及childHandler,所以在执行bind方法前,无论如何都要执行group、channel和childHandler方法。

实际的bind交给了doBind来完成:

 1 private ChannelFuture doBind(final SocketAddress localAddress) {
 2     final ChannelFuture regFuture = this.initAndRegister();
 3     final Channel channel = regFuture.channel();
 4     if (regFuture.cause() != null) {
 5         return regFuture;
 6     } else if (regFuture.isDone()) {
 7         ChannelPromise promise = channel.newPromise();
 8         doBind0(regFuture, channel, localAddress, promise);
 9         return promise;
10     } else {
11         final AbstractBootstrap.PendingRegistrationPromise promise = new AbstractBootstrap.PendingRegistrationPromise(channel);
12         regFuture.addListener(new ChannelFutureListener() {
13             public void operationComplete(ChannelFuture future) throws Exception {
14                 Throwable cause = future.cause();
15                 if (cause != null) {
16                     promise.setFailure(cause);
17                 } else {
18                     promise.registered();
19                     AbstractBootstrap.doBind0(regFuture, channel, localAddress, promise);
20                 }
21             }
22         });
23         return promise;
24     }
25 }

首先调用initAndRegister,完成ServerSocketChannel的创建以及注册:

 1 final ChannelFuture initAndRegister() {
 2     Channel channel = null;
 3 
 4     try {
 5         channel = this.channelFactory.newChannel();
 6         this.init(channel);
 7     } catch (Throwable var3) {
 8         if (channel != null) {
 9             channel.unsafe().closeForcibly();
10             return (new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE)).setFailure(var3);
11         }
12 
13         return (new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE)).setFailure(var3);
14     }
15 
16     ChannelFuture regFuture = this.config().group().register(channel);
17     if (regFuture.cause() != null) {
18         if (channel.isRegistered()) {
19             channel.close();
20         } else {
21             channel.unsafe().closeForcibly();
22         }
23     }
24 
25     return regFuture;
26 }

首先调用channelFactory的newChannel通过反射机制构建Channel实例,也就是NioServerSocketChannel,


NioServerSocketChannel的无参构造:

1 public class NioServerSocketChannel extends AbstractNioMessageChannel implements ServerSocketChannel {
2     private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
3     
4     public NioServerSocketChannel() {
5         this(newSocket(DEFAULT_SELECTOR_PROVIDER));
6     }
7     ......
8 }

SelectorProvider 是JDK的,关于SelectorProvider在我之前的博客中有介绍:【Java】NIO中Selector的创建源码分析

在Windows系统下默认产生WindowsSelectorProvider,即DEFAULT_SELECTOR_PROVIDER,再来看看newSocket方法:

1 private static java.nio.channels.ServerSocketChannel newSocket(SelectorProvider provider) {
2     try {
3         return provider.openServerSocketChannel();
4     } catch (IOException var2) {
5         throw new ChannelException("Failed to open a server socket.", var2);
6     }
7 }

使用WindowsSelectorProvider创建了一个ServerSocketChannelImpl,其实看到这里就明白了,NioServerSocketChannel是为了封装JDK的ServerSocketChannel

接着调用另一个重载的构造:

1 public NioServerSocketChannel(java.nio.channels.ServerSocketChannel channel) {
2     super((Channel)null, channel, 16);
3     this.config = new NioServerSocketChannel.NioServerSocketChannelConfig(this, this.javaChannel().socket());
4 }

首先调用父类的三参构造,其中16对应的是JDK中SelectionKey的ACCEPT状态:

1 public static final int OP_ACCEPT = 1 << 4;

其父类的构造处于一条继承链上:

AbstractNioMessageChannel:

1 protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
2     super(parent, ch, readInterestOp);
3 }

AbstractNioChannel:

 1 protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
 2     super(parent);
 3     this.ch = ch;
 4     this.readInterestOp = readInterestOp;
 5 
 6     try {
 7         ch.configureBlocking(false);
 8     } catch (IOException var7) {
 9         try {
10             ch.close();
11         } catch (IOException var6) {
12             if (logger.isWarnEnabled()) {
13                 logger.warn("Failed to close a partially initialized socket.", var6);
14             }
15         }
16 
17         throw new ChannelException("Failed to enter non-blocking mode.", var7);
18     }
19 }

AbstractChannel:

 1 private final ChannelId id;
 2 private final Channel parent;
 3 private final Unsafe unsafe;
 4 private final DefaultChannelPipeline pipeline;
 5 
 6 protected AbstractChannel(Channel parent) {
 7     this.parent = parent;
 8     this.id = this.newId();
 9     this.unsafe = this.newUnsafe();
10     this.pipeline = this.newChannelPipeline();
11 }

在AbstractChannel中使用newUnsafe和newChannelPipeline分别创建了一个Unsafe和一个DefaultChannelPipeline对象,
在前面的博客介绍NioEventLoopGroup时候,在NioEventLoop的run方法中,每次轮询完调用processSelectedKeys方法时,都是通过这个unsafe根据SelectedKey来完成数据的读或写,unsafe是处理基础的数据读写
(unsafe在NioServerSocketChannel创建时,产生NioMessageUnsafe实例,在NioSocketChannel创建时产生NioSocketChannelUnsafe实例)

而pipeline的实现是一条双向责任链,负责处理unsafe提供的数据,进而进行用户的业务逻辑 (Netty中的ChannelPipeline源码分析

在AbstractNioChannel中调用configureBlocking方法给JDK的ServerSocketChannel设置为非阻塞模式,且让readInterestOp成员赋值为16用于未来注册ACCEPT事件。

在调用完继承链后回到NioServerSocketChannel构造,调用了javaChannel方法:

1 protected java.nio.channels.ServerSocketChannel javaChannel() {
2     return (java.nio.channels.ServerSocketChannel)super.javaChannel();
3 }

其实这个javaChannel就是刚才出传入到AbstractNioChannel中的ch成员:

1 protected SelectableChannel javaChannel() {
2     return this.ch;
3 }

也就是刚才创建的JDK的ServerSocketChannelImpl,用其socket方法,得到一个ServerSocket对象,然后产生了一个NioServerSocketChannelConfig对象,用于封装相关信息。

 

NioServerSocketChannel构建完毕,回到initAndRegister方法,使用刚创建的NioServerSocketChannel调用init方法,这个方法是在ServerBootstrap中实现的:

 1 void init(Channel channel) throws Exception {
 2     Map<ChannelOption<?>, Object> options = this.options0();
 3     synchronized(options) {
 4         setChannelOptions(channel, options, logger);
 5     }
 6 
 7     Map<AttributeKey<?>, Object> attrs = this.attrs0();
 8     synchronized(attrs) {
 9         Iterator var5 = attrs.entrySet().iterator();
10 
11         while(true) {
12             if (!var5.hasNext()) {
13                 break;
14             }
15 
16             Entry<AttributeKey<?>, Object> e = (Entry)var5.next();
17             AttributeKey<Object> key = (AttributeKey)e.getKey();
18             channel.attr(key).set(e.getValue());
19         }
20     }
21 
22     ChannelPipeline p = channel.pipeline();
23     final EventLoopGroup currentChildGroup = this.childGroup;
24     final ChannelHandler currentChildHandler = this.childHandler;
25     Map var9 = this.childOptions;
26     final Entry[] currentChildOptions;
27     synchronized(this.childOptions) {
28         currentChildOptions = (Entry[])this.childOptions.entrySet().toArray(newOptionArray(0));
29     }
30 
31     var9 = this.childAttrs;
32     final Entry[] currentChildAttrs;
33     synchronized(this.childAttrs) {
34         currentChildAttrs = (Entry[])this.childAttrs.entrySet().toArray(newAttrArray(0));
35     }
36 
37     p.addLast(new ChannelHandler[]{new ChannelInitializer<Channel>() {
38         public void initChannel(final Channel ch) throws Exception {
39             final ChannelPipeline pipeline = ch.pipeline();
40             ChannelHandler handler = ServerBootstrap.this.config.handler();
41             if (handler != null) {
42                 pipeline.addLast(new ChannelHandler[]{handler});
43             }
44 
45             ch.eventLoop().execute(new Runnable() {
46                 public void run() {
47                     pipeline.addLast(new ChannelHandler[]{new ServerBootstrap.ServerBootstrapAcceptor(ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs)});
48                 }
49             });
50         }
51     }});
52 }

首先对attrs和options这两个成员进行了填充属性配置,这不是重点,然后获取刚才创建的NioServerSocketChannel的责任链pipeline,通过addLast将ChannelInitializer加入责任链,在ChannelInitializer中重写了initChannel方法,首先根据handler是否是null(这个handler是ServerBootstrap调用handler方法添加的,和childHandler方法不一样),若是handler不是null,将handler加入责任链,无论如何,都会异步将一个ServerBootstrapAcceptor对象加入责任链(后面会说为什么是异步)

 

这个ChannelInitializer的initChannel方法的执行需要等到后面注册时才会被调用,在后面pipeline处理channelRegistered请求时,此initChannel方法才会被执行 (Netty中的ChannelPipeline源码分析

ChannelInitializer的channelRegistered方法:

1 public final void channelRegistered(ChannelHandlerContext ctx) throws Exception {
2     if (initChannel(ctx)) {
3         ctx.pipeline().fireChannelRegistered();
4     } else {
5         ctx.fireChannelRegistered();
6     }
7 }

首先调用initChannel方法(和上面的initChannel不是一个):

 1 private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
 2     if (initMap.putIfAbsent(ctx, Boolean.TRUE) == null) { 
 3         try {
 4             initChannel((C) ctx.channel());
 5         } catch (Throwable cause) {
 6             exceptionCaught(ctx, cause);
 7         } finally {
 8             remove(ctx);
 9         }
10         return true;
11     }
12     return false;
13 }

可以看到,这个ChannelInitializer只会在pipeline中初始化一次,仅用于Channel的注册,在完成注册后,会调用remove方法将其从pipeline中移除:
remove方法:

 1 private void remove(ChannelHandlerContext ctx) {
 2     try {
 3         ChannelPipeline pipeline = ctx.pipeline();
 4         if (pipeline.context(this) != null) {
 5             pipeline.remove(this);
 6         }
 7     } finally {
 8         initMap.remove(ctx);
 9     }
10 }

在移除前,就会回调用刚才覆盖的initChannel方法,异步向pipeline添加了ServerBootstrapAcceptor,用于后续的NioServerSocketChannel侦听到客户端连接后,完成在服务端的NioSocketChannel的注册。

回到initAndRegister,在对NioServerSocketChannel初始化完毕,接下来就是注册逻辑:

1 ChannelFuture regFuture = this.config().group().register(channel);

首先调用config().group(),这个就得到了一开始在ServerBootstrap的group方法传入的parentGroup,调用parentGroup的register方法,parentGroup是NioEventLoopGroup,这个方法是在子类MultithreadEventLoopGroup中实现的:

1 public ChannelFuture register(Channel channel) {
2     return this.next().register(channel);
3 }

首先调用next方法:

1 public EventLoop next() {
2     return (EventLoop)super.next();
3 }

实际上调用父类MultithreadEventExecutorGroup的next方法:

1 public EventExecutor next() {
2     return this.chooser.next();
3 }

关于chooser在我之前博客:Netty中NioEventLoopGroup的创建源码分析 介绍过,在NioEventLoopGroup创建时,默认会根据cpu个数创建二倍个NioEventLoop,而chooser就负责通过取模,每次选择一个NioEventLoop使用

所以在MultithreadEventLoopGroup的register方法实际调用了NioEventLoop的register方法:

NioEventLoop的register方法在子类SingleThreadEventLoop中实现:

1 public ChannelFuture register(Channel channel) {
2     return this.register((ChannelPromise)(new DefaultChannelPromise(channel, this)));
3 }
4 
5 public ChannelFuture register(ChannelPromise promise) {
6    ObjectUtil.checkNotNull(promise, "promise");
7     promise.channel().unsafe().register(this, promise);
8     return promise;
9 }

先把channel包装成ChannelPromise,默认是DefaultChannelPromise (Netty中的ChannelFuture和ChannelPromise),用于处理异步操作

调用重载方法,而在重载方法里,可以看到,实际上的register操作交给了channel的unsafe来实现:

unsafe的register方法在AbstractUnsafe中实现:

 1 public final void register(EventLoop eventLoop, final ChannelPromise promise) {
 2     if (eventLoop == null) {
 3         throw new NullPointerException("eventLoop");
 4     } else if (AbstractChannel.this.isRegistered()) {
 5         promise.setFailure(new IllegalStateException("registered to an event loop already"));
 6     } else if (!AbstractChannel.this.isCompatible(eventLoop)) {
 7         promise.setFailure(new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName()));
 8     } else {
 9         AbstractChannel.this.eventLoop = eventLoop;
10         if (eventLoop.inEventLoop()) {
11             this.register0(promise);
12         } else {
13             try {
14                 eventLoop.execute(new Runnable() {
15                     public void run() {
16                         AbstractUnsafe.this.register0(promise);
17                     }
18                 });
19             } catch (Throwable var4) {
20                 AbstractChannel.logger.warn("Force-closing a channel whose registration task was not accepted by an event loop: {}", AbstractChannel.this, var4);
21                 this.closeForcibly();
22                 AbstractChannel.this.closeFuture.setClosed();
23                 this.safeSetFailure(promise, var4);
24             }
25         }
26 
27     }
28 }

前面的判断做了一些检查就不细说了,直接看到else块
首先给当前Channel绑定了eventLoop,即通过刚才chooser选择的eventLoop,该Channel也就是NioServerSocketChannel
由于Unsafe的操作是在轮询线程中异步执行的,所里,这里需要判断inEventLoop是否处于轮询中
在之前介绍NioEventLoopGroup的时候说过,NioEventLoop在没有调用doStartThread方法时并没有启动轮询的,所以inEventLoop判断不成立

那么就调用eventLoop的execute方法,实际上的注册方法可以看到调用了AbstractUnsafe的register0方法,而将这个方法封装为Runnable交给eventLoop作为一个task去异步执行
先来看eventLoop的execute方法实现,是在NioEventLoop的子类SingleThreadEventExecutor中实现的:

 1 public void execute(Runnable task) {
 2     if (task == null) {
 3         throw new NullPointerException("task");
 4     } else {
 5         boolean inEventLoop = this.inEventLoop();
 6         this.addTask(task);
 7         if (!inEventLoop) {
 8             this.startThread();
 9             if (this.isShutdown() && this.removeTask(task)) {
10                 reject();
11             }
12         }
13 
14         if (!this.addTaskWakesUp && this.wakesUpForTask(task)) {
15             this.wakeup(inEventLoop);
16         }
17 
18     }
19 }

这里首先将task,即刚才的注册事件放入阻塞任务队列中,然后调用startThread方法:

 1 private void startThread() {
 2     if (this.state == 1 && STATE_UPDATER.compareAndSet(this, 1, 2)) {
 3         try {
 4             this.doStartThread();
 5         } catch (Throwable var2) {
 6             STATE_UPDATER.set(this, 1);
 7             PlatformDependent.throwException(var2);
 8         }
 9     }
10 
11 }

NioEventLoop此时还没有轮询,所以状态是1,对应ST_NOT_STARTED,此时利用CAS操作,将状态修改为2,即ST_STARTED ,标志着NioEventLoop要启动轮询了,果然,接下来就调用了doStartThread开启轮询线程:

  1 private void doStartThread() {
  2     assert this.thread == null;
  3 
  4     this.executor.execute(new Runnable() {
  5         public void run() {
  6             SingleThreadEventExecutor.this.thread = Thread.currentThread();
  7             if (SingleThreadEventExecutor.this.interrupted) {
  8                 SingleThreadEventExecutor.this.thread.interrupt();
  9             }
 10 
 11             boolean success = false;
 12             SingleThreadEventExecutor.this.updateLastExecutionTime();
 13             boolean var112 = false;
 14 
 15             int oldState;
 16             label1907: {
 17                 try {
 18                     var112 = true;
 19                     SingleThreadEventExecutor.this.run();
 20                     success = true;
 21                     var112 = false;
 22                     break label1907;
 23                 } catch (Throwable var119) {
 24                     SingleThreadEventExecutor.logger.warn("Unexpected exception from an event executor: ", var119);
 25                     var112 = false;
 26                 } finally {
 27                     if (var112) {
 28                         int oldStatex;
 29                         do {
 30                             oldStatex = SingleThreadEventExecutor.this.state;
 31                         } while(oldStatex < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldStatex, 3));
 32 
 33                         if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L && SingleThreadEventExecutor.logger.isErrorEnabled()) {
 34                             SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
 35                         }
 36 
 37                         try {
 38                             while(!SingleThreadEventExecutor.this.confirmShutdown()) {
 39                                 ;
 40                             }
 41                         } finally {
 42                             try {
 43                                 SingleThreadEventExecutor.this.cleanup();
 44                             } finally {
 45                                 SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
 46                                 SingleThreadEventExecutor.this.threadLock.release();
 47                                 if (!SingleThreadEventExecutor.this.taskQueue.isEmpty() && SingleThreadEventExecutor.logger.isWarnEnabled()) {
 48                                     SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
 49                                 }
 50 
 51                                 SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
 52                             }
 53                         }
 54 
 55                     }
 56                 }
 57 
 58                 do {
 59                     oldState = SingleThreadEventExecutor.this.state;
 60                 } while(oldState < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldState, 3));
 61 
 62                 if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L && SingleThreadEventExecutor.logger.isErrorEnabled()) {
 63                     SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
 64                 }
 65 
 66                 try {
 67                     while(!SingleThreadEventExecutor.this.confirmShutdown()) {
 68                         ;
 69                     }
 70 
 71                     return;
 72                 } finally {
 73                     try {
 74                         SingleThreadEventExecutor.this.cleanup();
 75                     } finally {
 76                         SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
 77                         SingleThreadEventExecutor.this.threadLock.release();
 78                         if (!SingleThreadEventExecutor.this.taskQueue.isEmpty() && SingleThreadEventExecutor.logger.isWarnEnabled()) {
 79                             SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
 80                         }
 81 
 82                         SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
 83                     }
 84                 }
 85             }
 86 
 87             do {
 88                 oldState = SingleThreadEventExecutor.this.state;
 89             } while(oldState < 3 && !SingleThreadEventExecutor.STATE_UPDATER.compareAndSet(SingleThreadEventExecutor.this, oldState, 3));
 90 
 91             if (success && SingleThreadEventExecutor.this.gracefulShutdownStartTime == 0L && SingleThreadEventExecutor.logger.isErrorEnabled()) {
 92                 SingleThreadEventExecutor.logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called before run() implementation terminates.");
 93             }
 94 
 95             try {
 96                 while(!SingleThreadEventExecutor.this.confirmShutdown()) {
 97                     ;
 98                 }
 99             } finally {
100                 try {
101                     SingleThreadEventExecutor.this.cleanup();
102                 } finally {
103                     SingleThreadEventExecutor.STATE_UPDATER.set(SingleThreadEventExecutor.this, 5);
104                     SingleThreadEventExecutor.this.threadLock.release();
105                     if (!SingleThreadEventExecutor.this.taskQueue.isEmpty() && SingleThreadEventExecutor.logger.isWarnEnabled()) {
106                         SingleThreadEventExecutor.logger.warn("An event executor terminated with non-empty task queue (" + SingleThreadEventExecutor.this.taskQueue.size() + ')');
107                     }
108 
109                     SingleThreadEventExecutor.this.terminationFuture.setSuccess((Object)null);
110                 }
111             }
112 
113         }
114     });
115 }

关于doStartThread方法,我在 Netty中NioEventLoopGroup的创建源码分析 中已经说的很细了,这里就不再一步一步分析了

因为此时还没真正意义上的启动轮询,所以thread等于null成立的,然后调用executor的execute方法,这里的executor是一个线程池,在之前说过的,所以里面的run方法是处于一个线程里面的,然后给thread成员赋值为当前线程,表明正式进入了轮询。
而SingleThreadEventExecutor.this.run()才是真正的轮询逻辑,这在之前也说过,这个run的实现是在父类NioEventLoop中:

 1 protected void run() {
 2     while(true) {
 3         while(true) {
 4             try {
 5                 switch(this.selectStrategy.calculateStrategy(this.selectNowSupplier, this.hasTasks())) {
 6                 case -2:
 7                     continue;
 8                 case -1:
 9                     this.select(this.wakenUp.getAndSet(false));
10                     if (this.wakenUp.get()) {
11                         this.selector.wakeup();
12                     }
13                 default:
14                     this.cancelledKeys = 0;
15                     this.needsToSelectAgain = false;
16                     int ioRatio = this.ioRatio;
17                     if (ioRatio == 100) {
18                         try {
19                             this.processSelectedKeys();
20                         } finally {
21                             this.runAllTasks();
22                         }
23                     } else {
24                         long ioStartTime = System.nanoTime();
25                         boolean var13 = false;
26 
27                         try {
28                             var13 = true;
29                             this.processSelectedKeys();
30                             var13 = false;
31                         } finally {
32                             if (var13) {
33                                 long ioTime = System.nanoTime() - ioStartTime;
34                                 this.runAllTasks(ioTime * (long)(100 - ioRatio) / (long)ioRatio);
35                             }
36                         }
37 
38                         long ioTime = System.nanoTime() - ioStartTime;
39                         this.runAllTasks(ioTime * (long)(100 - ioRatio) / (long)ioRatio);
40                     }
41                 }
42             } catch (Throwable var21) {
43                 handleLoopException(var21);
44             }
45 
46             try {
47                 if (this.isShuttingDown()) {
48                     this.closeAll();
49                     if (this.confirmShutdown()) {
50                         return;
51                     }
52                 }
53             } catch (Throwable var18) {
54                 handleLoopException(var18);
55             }
56         }
57     }
58 }

首先由于task已经有一个了,就是刚才的注册事件,所以选择策略calculateStrategy最终调用selectNow(也是之前说过的):

 1 private final IntSupplier selectNowSupplier = new IntSupplier() {
 2     public int get() throws Exception {
 3         return NioEventLoop.this.selectNow();
 4     }
 5 };
 6 
 7 int selectNow() throws IOException {
 8     int var1;
 9     try {
10         var1 = this.selector.selectNow();
11     } finally {
12         if (this.wakenUp.get()) {
13             this.selector.wakeup();
14         }
15 
16     }
17 
18     return var1;
19 }

使用JDK原生Selector进行selectNow,由于此时没有任何Channel的注册,所以selectNow会立刻返回0,此时就进入default逻辑,由于没有任何注册,processSelectedKeys方法也做不了什么,所以在这一次的轮询实质上只进行了runAllTasks方法,此方法会执行阻塞队列中的task的run方法(还是在之前博客中介绍过),由于轮询是在线程池中的一个线程中运行的,所以task的执行是一个异步操作。(在执行完task,将task移除阻塞对立,线程继续轮询)

这时就可以回到AbstractChannel的register方法中了,由上面可以知道task实际上异步执行了:

1 AbstractUnsafe.this.register0(promise);

register0方法:

 1 private void register0(ChannelPromise promise) {
 2     try {
 3         if (!promise.setUncancellable() || !this.ensureOpen(promise)) {
 4             return;
 5         }
 6 
 7         boolean firstRegistration = this.neverRegistered;
 8         AbstractChannel.this.doRegister();
 9         this.neverRegistered = false;
10         AbstractChannel.this.registered = true;
11         AbstractChannel.this.pipeline.invokeHandlerAddedIfNeeded();
12         this.safeSetSuccess(promise);
13         AbstractChannel.this.pipeline.fireChannelRegistered();
14         if (AbstractChannel.this.isActive()) {
15             if (firstRegistration) {
16                 AbstractChannel.this.pipeline.fireChannelActive();
17             } else if (AbstractChannel.this.config().isAutoRead()) {
18                 this.beginRead();
19             }
20         }
21     } catch (Throwable var3) {
22         this.closeForcibly();
23         AbstractChannel.this.closeFuture.setClosed();
24         this.safeSetFailure(promise, var3);
25     }
26 
27 }

可以看到实际上的注册逻辑又交给了AbstractChannel的doRegister,而这个方法在AbstractNioChannel中实现:

 1 protected void doRegister() throws Exception {
 2     boolean selected = false;
 3 
 4     while(true) {
 5         try {
 6             this.selectionKey = this.javaChannel().register(this.eventLoop().unwrappedSelector(), 0, this);
 7             return;
 8         } catch (CancelledKeyException var3) {
 9             if (selected) {
10                 throw var3;
11             }
12 
13             this.eventLoop().selectNow();
14             selected = true;
15         }
16     }
17 }

javaChannel就是之前产生的JDK的ServerSocketChannel,unwrappedSelector在之前说过,就是未经修改的JDK原生Selector,这个Selector和eventLoop是一对一绑定的,可以看到调用JDK原生的注册方法,完成了对ServerSocketChannel的注册,但是注册的是一个0状态(缺省值),而传入的this,即AbstractNioChannel对象作为了一个附件,用于以后processSelectedKeys方法从SelectionKey中得到对应的Netty的Channel(还是之前博客说过)
关于缺省值,是由于AbstractNioChannel不仅用于NioServerSocketChannel的注册,还用于NioSocketChannel的注册,只有都使用缺省值注册才不会产生异常  【Java】NIO中Channel的注册源码分析 ,并且,在以后processSelectedKeys方法会对0状态判断,再使用unsafe进行相应的逻辑处理。

 

在完成JDK的注册后,调用pipeline的invokeHandlerAddedIfNeeded方法(Netty中的ChannelPipeline源码分析),处理ChannelHandler的handlerAdded的回调,即调用用户添加的ChannelHandler的handlerAdded方法。
调用safeSetSuccess,标志异步操作完成:

1 protected final void safeSetSuccess(ChannelPromise promise) {
2     if (!(promise instanceof VoidChannelPromise) && !promise.trySuccess()) {
3         logger.warn("Failed to mark a promise as success because it is done already: {}", promise);
4     }
5 }

关于异步操作我在之前的博客中说的很清楚了:Netty中的ChannelFuture和ChannelPromise


接着调用pipeline的fireChannelRegistered方法,也就是在责任链上调用channelRegistered方法,这时,就会调用之在ServerBootstrap中向pipeline添加的ChannelInitializer的channelRegistered,进而回调initChannel方法,完成对ServerBootstrapAcceptor的添加。

回到register0方法,在处理完pipeline的责任链后,根据当前AbstractChannel即NioServerSocketChannel的isActive:

1 public boolean isActive() {
2     return this.javaChannel().socket().isBound();
3 }

获得NioServerSocketChannel绑定的JDK的ServerSocketChannel,进而获取ServerSocket,判断isBound:

1 public boolean isBound() {
2    // Before 1.3 ServerSockets were always bound during creation
3     return bound || oldImpl;
4 }

这里实际上就是判断ServerSocket是否调用了bind方法,前面说过register0方法是一个异步操作,在多线程环境下不能保证执行顺序,若是此时已经完成了ServerSocket的bind,根据firstRegistration判断是否需要pipeline传递channelActive请求,首先会执行pipeline的head即HeadContext的channelActive方法:

1 @Override
2 public void channelActive(ChannelHandlerContext ctx) throws Exception {
3     ctx.fireChannelActive();
4 
5     readIfIsAutoRead();
6 }

在HeadContext通过ChannelHandlerContext 传递完channelActive请求后,会调用readIfIsAutoRead方法:

1 private void readIfIsAutoRead() {
2     if (channel.config().isAutoRead()) {
3         channel.read();
4     }
5 }

此时调用AbstractChannel的read方法:

1 public Channel read() {
2     pipeline.read();
3     return this;
4 }

最终在请求链由HeadContext执行read方法:

1 public void read(ChannelHandlerContext ctx) {
2     unsafe.beginRead();
3 }

终于可以看到此时调用unsafe的beginRead方法:

 1 public final void beginRead() {
 2     assertEventLoop();
 3 
 4     if (!isActive()) {
 5         return;
 6     }
 7 
 8     try {
 9         doBeginRead();
10     } catch (final Exception e) {
11         invokeLater(new Runnable() {
12             @Override
13             public void run() {
14                 pipeline.fireExceptionCaught(e);
15             }
16         });
17         close(voidPromise());
18     }
19 }

最终执行了doBeginRead方法,由AbstractNioChannel实现:

 1 protected void doBeginRead() throws Exception {
 2     final SelectionKey selectionKey = this.selectionKey;
 3     if (!selectionKey.isValid()) {
 4         return;
 5     }
 6     
 7     readPending = true;
 8     
 9     final int interestOps = selectionKey.interestOps();
10     if ((interestOps & readInterestOp) == 0) {
11         selectionKey.interestOps(interestOps | readInterestOp);
12     }
13 }

这里,就完成了向Selector注册readInterestOp事件,从前面来看就是ACCEPT事件

 

回到AbstractBootstrap的doBind方法,在initAndRegister逻辑结束后,由上面可以知道,实际上的register注册逻辑是一个异步操作,在register0中完成
根据ChannelFuture来判断异步操作是否完成,如果isDone,则表明异步操作先完成,即完成了safeSetSuccess方法,
然后调用newPromise方法:

1 public ChannelPromise newPromise() {
2     return pipeline.newPromise();
3 }

给channel的pipeline绑定异步操作ChannelPromise
然后调用doBind0方法完成ServerSocket的绑定,若是register0这个异步操作还没完成,就需要给ChannelFuture产生一个异步操作的侦听ChannelFutureListener对象,等到register0方法调用safeSetSuccess时,在promise的trySuccess中会回调ChannelFutureListener的operationComplete方法,进而调用doBind0方法

doBind0方法:

 1 private static void doBind0(
 2         final ChannelFuture regFuture, final Channel channel,
 3         final SocketAddress localAddress, final ChannelPromise promise) {
 4     channel.eventLoop().execute(new Runnable() {
 5         @Override
 6         public void run() {
 7             if (regFuture.isSuccess()) {
 8                 channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
 9             } else {
10                 promise.setFailure(regFuture.cause());
11             }
12         }
13     });
14 }

向轮询线程提交了一个任务,异步处理bind,可以看到,只有在regFuture异步操作成功结束后,调用channel的bind方法:

1 public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
2    return pipeline.bind(localAddress, promise);
3 }

实际上的bind又交给pipeline,去完成,pipeline中就会交给责任链去完成,最终会交给HeadContext完成:

1 public void bind(
2                 ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)
3                 throws Exception {
4     unsafe.bind(localAddress, promise);
5 }

可以看到,绕了一大圈,交给了unsafe完成:

 1 public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
 2     assertEventLoop();
 3 
 4     if (!promise.setUncancellable() || !ensureOpen(promise)) {
 5         return;
 6     }
 7     
 8     if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
 9         localAddress instanceof InetSocketAddress &&
10         !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
11         !PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
12         logger.warn(
13                 "A non-root user can't receive a broadcast packet if the socket " +
14                 "is not bound to a wildcard address; binding to a non-wildcard " +
15                 "address (" + localAddress + ") anyway as requested.");
16     }
17 
18     boolean wasActive = isActive();
19     try {
20         doBind(localAddress);
21     } catch (Throwable t) {
22         safeSetFailure(promise, t);
23         closeIfClosed();
24         return;
25     }
26 
27     if (!wasActive && isActive()) {
28         invokeLater(new Runnable() {
29             @Override
30             public void run() {
31                 pipeline.fireChannelActive();
32             }
33         });
34     }
35 
36     safeSetSuccess(promise);
37 }

然而,真正的bind还是回调了doBind方法,最终是由NioServerSocketChannel来实现:

1 @Override
2 protected void doBind(SocketAddress localAddress) throws Exception {
3     if (PlatformDependent.javaVersion() >= 7) {
4         javaChannel().bind(localAddress, config.getBacklog());
5     } else {
6         javaChannel().socket().bind(localAddress, config.getBacklog());
7     }
8 }

在这里终于完成了对JDK的ServerSocketChannel的bind操作


在上面的

1 if (!wasActive && isActive()) {
2     invokeLater(new Runnable() {
3         @Override
4         public void run() {
5             pipeline.fireChannelActive();
6         }
7     });
8 }

这个判断,就是确保在register0中isActive时,还没完成绑定,也就没有beginRead操作来向Selector注册ACCEPT事件,那么就在这里进行注册,进而让ServerSocket去侦听客户端的连接


在服务端ACCEPT到客户端的连接后,在NioEventLoop轮询中,就会调用processSelectedKeys处理ACCEPT的事件就绪,然后交给unsafe的read去处理  Netty中NioEventLoopGroup的创建源码分析

 

在服务端,由NioMessageUnsafe实现:

 1 public void read() {
 2         assert eventLoop().inEventLoop();
 3         final ChannelConfig config = config();
 4         final ChannelPipeline pipeline = pipeline();
 5         final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
 6         allocHandle.reset(config);
 7 
 8         boolean closed = false;
 9         Throwable exception = null;
10         try {
11             try {
12                 do {
13                     int localRead = doReadMessages(readBuf);
14                     if (localRead == 0) {
15                         break;
16                     }
17                     if (localRead < 0) {
18                         closed = true;
19                         break;
20                     }
21 
22                     allocHandle.incMessagesRead(localRead);
23                 } while (allocHandle.continueReading());
24             } catch (Throwable t) {
25                 exception = t;
26             }
27 
28             int size = readBuf.size();
29             for (int i = 0; i < size; i ++) {
30                 readPending = false;
31                 pipeline.fireChannelRead(readBuf.get(i));
32             }
33             readBuf.clear();
34             allocHandle.readComplete();
35             pipeline.fireChannelReadComplete();
36 
37             if (exception != null) {
38                 closed = closeOnReadError(exception);
39 
40                 pipeline.fireExceptionCaught(exception);
41             }
42 
43             if (closed) {
44                 inputShutdown = true;
45                 if (isOpen()) {
46                     close(voidPromise());
47                 }
48             }
49         } finally {
50             if (!readPending && !config.isAutoRead()) {
51                 removeReadOp();
52             }
53         }
54     }
55 }

核心在doReadMessages方法,由NioServerSocketChannel实现:

 1 protected int doReadMessages(List<Object> buf) throws Exception {
 2     SocketChannel ch = SocketUtils.accept(javaChannel());
 3 
 4     try {
 5         if (ch != null) {
 6             buf.add(new NioSocketChannel(this, ch));
 7             return 1;
 8         }
 9     } catch (Throwable t) {
10         logger.warn("Failed to create a new channel from an accepted socket.", t);
11 
12         try {
13             ch.close();
14         } catch (Throwable t2) {
15             logger.warn("Failed to close a socket.", t2);
16         }
17     }
18 
19     return 0;
20 }

SocketUtils的accept方法其实就是用来调用JDK中ServerSocketChannel原生的accept方法,来得到一个JDK的SocketChannel对象,然后通过这个SocketChannel对象,将其包装成NioSocketChannel对象添加在buf这个List中

由此可以看到doReadMessages用来侦听所有就绪的连接,包装成NioSocketChannel将其放在List中
然后遍历这个List,调用 NioServerSocketChannel的pipeline的fireChannelRead方法,传递channelRead请求,、
在前面向pipeline中添加了ServerBootstrapAcceptor这个ChannelHandler,此时,它也会响应这个请求,回调channelRead方法:

 1 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 2     final Channel child = (Channel) msg;
 3 
 4     child.pipeline().addLast(childHandler);
 5 
 6     setChannelOptions(child, childOptions, logger);
 7 
 8     for (Entry<AttributeKey<?>, Object> e: childAttrs) {
 9         child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
10     }
11 
12     try {
13         childGroup.register(child).addListener(new ChannelFutureListener() {
14             @Override
15             public void operationComplete(ChannelFuture future) throws Exception {
16                 if (!future.isSuccess()) {
17                     forceClose(child, future.cause());
18                 }
19             }
20         });
21     } catch (Throwable t) {
22         forceClose(child, t);
23     }
24 }

msg就是侦听到的NioSocketChannel对象,给该对象的pipeline添加childHandler,也就是我们在ServerBootstrap中通过childHandler方法添加的
然后通过register方法完成对NioSocketChannel的注册(和NioServerSocketChannel注册逻辑一样)


至此Netty服务端的启动结束。

posted @ 2019-06-03 18:21  松饼人  阅读(656)  评论(0编辑  收藏  举报