作业三

# -*- coding: utf-8 -*-
"""
Created on Wed Mar  8 08:46:51 2023

@author: 86184
"""
# 对数据进行基本的探索

# 返回缺失值个数以及最大最小值

import pandas as pd

datafile= r'C:\Users\86184\Desktop\文件集\data\air_data.csv'  # 航空原始数据,第一行为属性标签

resultfile = r'C:\Users\86184\Desktop\文件集\data\explore.csv'  # 数据探索结果表

# 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码)

data = pd.read_csv(datafile, encoding = 'utf-8')

# 包括对数据的基本描述,percentiles参数是指定计算多少的分位数表(如1/4分位数、中位数等)

explore = data.describe(percentiles = [], include = 'all').T

# describe()函数自动计算非空值数,需要手动计算空值数

explore['null'] = len(data)-explore['count']

explore = explore[['null', 'max', 'min']]

explore.columns = [u'空值数', u'最大值', u'最小值']  # 表头重命名

'''

这里只选取部分探索结果。

describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、

freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值)

'''

explore.to_csv(resultfile)  # 导出结果

  

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 8 08:46:51 2023

@author: 86184
"""
# 对数据进行基本的探索

# 返回缺失值个数以及最大最小值

import pandas as pd

datafile= r'C:\Users\86184\Desktop\文件集\data\air_data.csv' # 航空原始数据,第一行为属性标签

resultfile = r'C:\Users\86184\Desktop\文件集\data\explore.csv' # 数据探索结果表

# 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码)

data = pd.read_csv(datafile, encoding = 'utf-8')

# 包括对数据的基本描述,percentiles参数是指定计算多少的分位数表(如1/4分位数、中位数等)

explore = data.describe(percentiles = [], include = 'all').T

# describe()函数自动计算非空值数,需要手动计算空值数

explore['null'] = len(data)-explore['count']

explore = explore[['null', 'max', 'min']]

explore.columns = [u'空值数', u'最大值', u'最小值'] # 表头重命名

 

explore.to_csv(resultfile) # 导出结果

 

# 客户信息类别

# 提取会员入会年份
import matplotlib.pyplot as plt

from datetime import datetime

ffp = data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d'))

ffp_year = ffp.map(lambda x : x.year)

# 绘制各年份会员入会人数直方图

fig = plt.figure(figsize=(8 ,5)) # 设置画布大小

plt.rcParams['font.sans-serif'] = 'SimHei' # 设置中文显示

plt.rcParams['axes.unicode_minus'] = False

plt.hist(ffp_year, bins='auto', color='#0504aa')

plt.xlabel('年份')

plt.ylabel('入会人数')

plt.title('各年份会员入会人数 number3019',fontsize=20)

plt.show()

plt.close

# 提取会员不同性别人数

male = pd.value_counts(data['GENDER'])['男']

female = pd.value_counts(data['GENDER'])['女']

# 绘制会员性别比例饼图

fig = plt.figure(figsize=(7 ,4)) # 设置画布大小

plt.pie([ male, female], labels=['男','女'], colors=['lightskyblue', 'lightcoral'],

autopct='%1.1f%%')

plt.title('会员性别比例 number3019',fontsize=20)

plt.show()

plt.close

# 提取不同级别会员的人数

lv_four = pd.value_counts(data['FFP_TIER'])[4]

lv_five = pd.value_counts(data['FFP_TIER'])[5]

lv_six = pd.value_counts(data['FFP_TIER'])[6]

# 绘制会员各级别人数条形图

fig = plt.figure(figsize=(8 ,5)) # 设置画布大小

plt.bar(left=range(3), height=[lv_four,lv_five,lv_six], width=0.4, alpha=0.8, color='skyblue')

plt.xticks([index for index in range(3)], ['4','5','6'])

plt.xlabel('会员等级')

plt.ylabel('会员人数')

plt.title('会员各级别人数 number3013',fontsize=20)

plt.show()

plt.clos

  

 

 

 

 

lte = data['LAST_TO_END']

fc = data['FLIGHT_COUNT']

sks = data['SEG_KM_SUM']

# 绘制最后乘机至结束时长箱线图

fig = plt.figure(figsize=(5 ,8))

plt.boxplot(lte,

            patch_artist=True,

            labels = ['时长'],  # 设置x轴标题

            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色

plt.title('会员最后乘机至结束时长分布箱线图  number3019',fontsize=20)

# 显示y坐标轴的底线

plt.grid(axis='y')

plt.show()

plt.close

# 绘制客户飞行次数箱线图

fig = plt.figure(figsize=(5 ,8))

plt.boxplot(fc,

            patch_artist=True,

            labels = ['飞行次数'],  # 设置x轴标题

            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色

plt.title('会员飞行次数分布箱线图  number3019',fontsize=20)

# 显示y坐标轴的底线

plt.grid(axis='y')

plt.show()

plt.close

# 绘制客户总飞行公里数箱线图

fig = plt.figure(figsize=(5 ,10))

plt.boxplot(sks,

            patch_artist=True,

            labels = ['总飞行公里数'],  # 设置x轴标题

            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色

plt.title('客户总飞行公里数箱线图  number3019',fontsize=20)

# 显示y坐标轴的底线

plt.grid(axis='y')

plt.show()

plt.close

  

 

 

 

 

 

 

# 积分信息类别

# 提取会员积分兑换次数

ec = data['EXCHANGE_COUNT']

# 绘制会员兑换积分次数直方图

fig = plt.figure(figsize=(8 ,5))  # 设置画布大小

plt.hist(ec, bins=5, color='#0504aa')

plt.xlabel('兑换次数')

plt.ylabel('会员人数')

plt.title('会员兑换积分次数分布直方图 number3019',fontsize=20)

plt.show()

plt.close

# 提取会员总累计积分

ps = data['Points_Sum']

# 绘制会员总累计积分箱线图

fig = plt.figure(figsize=(5 ,8))

plt.boxplot(ps,

            patch_artist=True,

            labels = ['总累计积分'],  # 设置x轴标题

            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色

plt.title('客户总累计积分箱线图 number3019',fontsize=20)

# 显示y坐标轴的底线

plt.grid(axis='y')

plt.show()

plt.close

  

 

 

 

 

# 提取属性并合并为新数据集

data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END',

                  'SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']]

age1 = data['AGE'].fillna(0)

data_corr['AGE'] = age1.astype('int64')

data_corr['ffp_year'] = ffp_year

# 计算相关性矩阵

dt_corr = data_corr.corr(method='pearson')

print('相关性矩阵为:\n',dt_corr)

# 绘制热力图

import seaborn as sns

plt.subplots(figsize=(10, 10)) # 设置画面大小

sns.heatmap(dt_corr, annot=True, vmax=1, square=True, cmap='Blues')
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.title('热力图  number3019',fontsize=20)

plt.show()

plt.close

  

 

 

 

 

import numpy as np
import pandas as pd

datafile = r'C:\Users\86184\Desktop\文件集\data\air_data.csv'  # 航空原始数据路径
cleanedfile = r'C:\Users\86184\Desktop\文件集\data\data_cleaned.csv'  # 数据清洗后保存的文件路径

# 读取数据
airline_data = pd.read_csv(datafile,encoding = 'utf-8')
print('原始数据的形状为:',airline_data.shape)

# 去除票价为空的记录
airline_notnull = airline_data.loc[airline_data['SUM_YR_1'].notnull() & 
                                   airline_data['SUM_YR_2'].notnull(),:]
print('删除缺失记录后数据的形状为:',airline_notnull.shape)

# 只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录。
index1 = airline_notnull['SUM_YR_1'] != 0
index2 = airline_notnull['SUM_YR_2'] != 0
index3 = (airline_notnull['SEG_KM_SUM']> 0) & (airline_notnull['avg_discount'] != 0)
index4 = airline_notnull['AGE'] > 100  # 去除年龄大于100的记录
airline = airline_notnull[(index1 | index2) & index3 & ~index4]
print('数据清洗后数据的形状为:',airline.shape)

airline.to_csv(cleanedfile)  # 保存清洗后的数据

  

import pandas as pd
import numpy as np

# 读取数据清洗后的数据
cleanedfile = r'C:\Users\86184\Desktop\文件集\data\data_cleaned.csv'  # 数据清洗后保存的文件路径
airline = pd.read_csv(cleanedfile, encoding = 'utf-8')
# 选取需求属性
airline_selection = airline[['FFP_DATE','LOAD_TIME','LAST_TO_END',
                                     'FLIGHT_COUNT','SEG_KM_SUM','avg_discount']]
print('筛选的属性前5行为:\n',airline_selection.head())



# 代码7-8

# 构造属性L
L = pd.to_datetime(airline_selection['LOAD_TIME']) - \
pd.to_datetime(airline_selection['FFP_DATE'])
L = L.astype('str').str.split().str[0]
L = L.astype('int')/30

# 合并属性
airline_features = pd.concat([L,airline_selection.iloc[:,2:]],axis = 1)
airline_features.columns = ['L','R','F','M','C']
print('构建的LRFMC属性前5行为:\n',airline_features.head())

# 数据标准化
from sklearn.preprocessing import StandardScaler
data = StandardScaler().fit_transform(airline_features)
np.savez(r'C:\Users\86184\Desktop\文件集\data\airline_scale.npz',data)
print('标准化后LRFMC五个属性为:\n',data[:5,:])

  

 

 

import pandas as pd
import numpy as np
from sklearn.cluster import KMeans  # 导入kmeans算法

# 读取标准化后的数据
airline_scale = np.load(r'C:\Users\86184\Desktop\文件集\data\airline_scale.npz')['arr_0']
k = 5  # 确定聚类中心数

# 构建模型,随机种子设为123
kmeans_model = KMeans(n_clusters = k,n_jobs=4,random_state=123)
fit_kmeans = kmeans_model.fit(airline_scale)  # 模型训练

# 查看聚类结果
kmeans_cc = kmeans_model.cluster_centers_  # 聚类中心
print('各类聚类中心为:\n',kmeans_cc)
kmeans_labels = kmeans_model.labels_  # 样本的类别标签
print('各样本的类别标签为:\n',kmeans_labels)
r1 = pd.Series(kmeans_model.labels_).value_counts()  # 统计不同类别样本的数目
print('最终每个类别的数目为:\n',r1)
# 输出聚类分群的结果
cluster_center = pd.DataFrame(kmeans_model.cluster_centers_,\
             columns = ['ZL','ZR','ZF','ZM','ZC'])   # 将聚类中心放在数据框中
cluster_center.index = pd.DataFrame(kmeans_model.labels_ ).\
                  drop_duplicates().iloc[:,0]  # 将样本类别作为数据框索引
print(cluster_center)


# 代码7-10

%matplotlib inline
import matplotlib.pyplot as plt 
# 客户分群雷达图
labels = ['ZL','ZR','ZF','ZM','ZC']
legen = ['客户群' + str(i + 1) for i in cluster_center.index]  # 客户群命名,作为雷达图的图例
lstype = ['-','--',(0, (3, 5, 1, 5, 1, 5)),':','-.']
kinds = list(cluster_center.iloc[:, 0])
# 由于雷达图要保证数据闭合,因此再添加L列,并转换为 np.ndarray
cluster_center = pd.concat([cluster_center, cluster_center[['ZL']]], axis=1)
centers = np.array(cluster_center.iloc[:, 0:])

# 分割圆周长,并让其闭合
n = len(labels)
angle = np.linspace(0, 2 * np.pi, n, endpoint=False)
angle = np.concatenate((angle, [angle[0]]))
labels = np.concatenate((labels, [labels[0]]))
# 绘图
fig = plt.figure(figsize = (8,6))
ax = fig.add_subplot(111, polar=True)  # 以极坐标的形式绘制图形
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 
# 画线
for i in range(len(kinds)):
    ax.plot(angle, centers[i], linestyle=lstype[i], linewidth=2, label=kinds[i])
# 添加属性标签
ax.set_thetagrids(angle * 180 / np.pi, labels)
plt.title('客户特征分析雷达图--number:3019',fontsize=20)
plt.legend(legen)
plt.show()
plt.close

  

 

 

 

posted @ 2023-03-12 20:55  噜啦啦LLLRR  阅读(121)  评论(0)    收藏  举报