朴素贝叶斯算法
朴素贝叶斯分类方法
概率基础
概率(Probability)定义
- 概率定义为一件事情发生的可能性
- 扔出一个硬币,结果头像朝上
- 某天是晴天
- P(X) : 取值在[0, 1]
条件概率与联合概率
- 联合概率:包含多个条件,且所有条件同时成立的概率
- 记作:P(A,B)
- 特性:P(A, B) = P(A)P(B)
- 条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
- 记作:P(A|B)
- 特性:P(A1,A2|B) = P(A1|B)P(A2|B)
注意:此条件概率的成立,是由于A1,A2相互独立的结果(记忆)
贝叶斯公式
那么这个公式如果应用在文章分类的场景当中,我们可以这样看:
公式分为三个部分:
- P(C):每个文档类别的概率(某文档类别数/总文档数量)
- P(W│C):给定类别下特征(被预测文档中出现的词)的概率
- 计算方法:P(F1│C)=Ni/N (训练文档中去计算)
- Ni为该F1词在C类别所有文档中出现的次数
- N为所属类别C下的文档所有词出现的次数和
- 计算方法:P(F1│C)=Ni/N (训练文档中去计算)
- P(F1,F2,…) 预测文档中每个词的概率
如果计算两个类别概率比较:
所以我们只要比较前面的大小就可以,得出谁的概率大
文章分类计算
假设我们从训练数据集得到如下信息
- 计算结果
科技:P(科技|影院,支付宝,云计算) = 𝑃(影院,支付宝,云计算|科技)∗P(科技)=(8/100)∗(20/100)∗(63/100)∗(30/90) = 0.00456109 娱乐:P(娱乐|影院,支付宝,云计算) = 𝑃(影院,支付宝,云计算|娱乐)∗P(娱乐)=(56/121)∗(15/121)∗(0/121)∗(60/90) = 0
思考:我们计算出来某个概率为0,合适吗?
拉普拉斯平滑系数
目的:防止计算出的分类概率为0
P(娱乐|影院,支付宝,云计算) =P(影院,支付宝,云计算|娱乐)P(娱乐) =P(影院|娱乐)*P(支付宝|娱乐)*P(云计算|娱乐)P(娱乐)=(56+1/121+4)(15+1/121+4)(0+1/121+1*4)(60/90) = 0.00002
API
sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
- 朴素贝叶斯分类
- alpha:拉普拉斯平滑系数
案例:20类新闻分类
分析
-
分割数据集
-
tfidf进行的特征抽取
- 朴素贝叶斯预测
代码:
from sklearn.model_selection import train_test_split from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB def nb_news(): """ 用朴素贝叶斯算法对新闻进行分类 :return: """ # 1)获取数据 news = fetch_20newsgroups(subset="all") # 2)划分数据集 x_train, x_test, y_train, y_test = train_test_split(news.data, news.target) # 3)特征工程:文本特征抽取-tfidf transfer = TfidfVectorizer() x_train = transfer.fit_transform(x_train) x_test = transfer.transform(x_test) # 4)朴素贝叶斯算法预估器流程 estimator = MultinomialNB() estimator.fit(x_train, y_train) # 5)模型评估 # 方法1:直接比对真实值和预测值 y_predict = estimator.predict(x_test) print("y_predict:\n", y_predict) print("直接比对真实值和预测值:\n", y_test == y_predict) # 方法2:计算准确率 score = estimator.score(x_test, y_test) print("准确率为:\n", score) return None if __name__ == "__main__": # 代码3:用朴素贝叶斯算法对新闻进行分类 nb_news()
总结
- 优点:
- 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
- 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
- 分类准确度高,速度快
- 缺点:
- 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好