# -*- coding: utf-8 -*-
import requests
import re
import pandas
from bs4 import BeautifulSoup
from datetime import datetime
def getPageN(pageUrl):
res1 = requests.get(pageUrl)
res1.encoding = "utf-8"
soup = BeautifulSoup(res1.text, "html.parser")
page = soup.select('#pages .a1')[0].text.strip('条')
n = int(int(page)/10)
return n
# 1. 将新闻的正文内容保存到文本文件。
def writeNewsDetail(content):
f=open('gzcc.txt','a',encoding='utf-8')
f.write(content)
f.close()
# 8. 将获取新闻详情的代码定义成一个函数 def getNewDetail(newsUrl):
def getNewDetail(newsUrl):
res1 = requests.get(newsUrl)
res1.encoding = "utf-8"
soup = BeautifulSoup(res1.text, "html.parser")
news={}
news['title'] = soup.select('.show-title')[0].text
# print(news['title'])
info = soup.select('.show-info')[0].text
dt = info.lstrip('发布时间:')[:19]
# str = '2018-03-30 17:10:12'
news['datetimes'] = str(datetime.strptime(dt, '%Y-%m-%d %H:%M:%S'))
newsId = re.search('\_(.*).html', newsUrl).group(1).split('/')[-1]
clickUrl = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(newsId)
resc = requests.get(clickUrl)
news['click'] = int(resc.text.split('.html')[-1].lstrip("('").rstrip("');"))
source = info.find('来源:')
if source > 0:
news['sources'] = info[info.find('来源:'):].split()[0].lstrip('来源:')
# print("来源:",news['sources'])
author = info.find('作者:')
if author > 0:
news['authors'] = info[info.find('作者:'):].split()[0].lstrip('作者:')
# print('作者:',news['authors'])
y = info.find('摄影:')
if y > 0:
news['camera'] = info[info.find('摄影:'):].split()[0].lstrip('摄影:')
# print('摄影:', news['u'])
news['newsUrl'] = newsUrl
news['content'] = soup.select('#content')[0].text.strip()
writeNewsDetail(news['content'])
return(news)
def getListPage(pageUrl):
res = requests.get(pageUrl)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
newsList = []
for news in soup.select('li'):
if len(news.select('.news-list-title')) > 0:
newsUrl = news.select('a')[0].attrs['href']
newsList.append(getNewDetail(newsUrl))
# print(newsList)
return newsList
newsTotal = []
pageUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/'
getListPage(pageUrl)
# 2. 将新闻数据结构化为字典的列表:
newsTotal.extend(getListPage(pageUrl))
n = getPageN(pageUrl)
for i in range(2,3):
listPageUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'.format(i)
newsTotal.extend(getListPage(listPageUrl))
# 3. 安装pandas,用pandas.DataFrame(newstotal),创建一个DataFrame对象df.
df = pandas.DataFrame(newsTotal)
# 5. 用pandas提供的函数和方法进行数据分析:
# 提取包含点击次数、标题、来源的前6行数据
print(df[['click','title','sources']].head(6))
# 提取‘学校综合办’发布的,‘点击次数’超过3000的新闻。
print(df[(df['click']>3000)&(df['sources']=='学校综合办')])
# 提取'国际学院'和'学生工作处'发布的新闻。
sou = ['国际学院','学生工作处']
print(df[df['sources'].isin(sou)])
# 4. 通过df将提取的数据保存到csv或excel 文件。
df.to_excel('gzcc456.xlsx')