2.机器学习相关数学基础

3.作业要求:

1)贴上视频学习笔记,要求真实,不要抄袭,可以手写拍照。

             

 

          

           

 

           

 

          

 

          

 

          

 

          

 

          

 

          

 

           

 

             

 

            

 

            

 

             

 

             

 

             

 

                      

 

2)用自己的话总结“梯度”,“梯度下降”和“贝叶斯定理”,可以word编辑,可做思维导图,可以手写拍照,要求言简意赅、排版整洁。

答:

梯度:表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

梯度下降:梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。

贝叶斯定理:朴素贝叶斯是一种基于贝叶斯定理的简单概率分类器(分类又被称为监督式学习,所谓监督式学习即从已知样本数据中的特征信息去推测可能出现的输出以完成分类,反之聚类问题被称为非监督式学习),朴素贝叶斯在处理文本数据时可以得到较好的分类结果,所以它被广泛应用于文本分类/垃圾邮件过滤/自然语言处理等场景。

 

posted on 2020-04-16 10:17  ztr啊仁  阅读(107)  评论(0)    收藏  举报

导航