POJ 2785 4 Values whose Sum is 0(想法题)

4 Values whose Sum is 0
Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 20334   Accepted: 6100
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

思路

题意:给定四个长度为n的数组A, B, C, D。 从每个数组中取一个数, 这样得到四个数, 并且这四个数的之和为0. 求这样组合的个数。

题解:直接算出组合数的话,复杂度太高,分成两堆来求,算出 A[i] + B[i] 的值,然后在A[i] + B[i]中找 等于 -C[i] - D[i] 的个数

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 4005;
int cd[maxn*maxn];

int main()
{
	int N;
	while (~scanf("%d",&N))
	{
		int a[maxn],b[maxn],c[maxn],d[maxn];
		for (int i = 0;i < N;i++)	scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
		for (int i = 0;i < N;i++)	for (int j = 0;j < N;j++)	cd[i*N+j] = c[i] + d[j];
		sort(cd,cd + N*N);
		int res = 0;
		for (int i = 0;i < N;i++)
		{
			for (int j = 0;j < N;j++)
			{
				int tmp = -a[i] - b[j];
				int pos1 = lower_bound(cd,cd + N*N,tmp) - cd;
				int pos2 = upper_bound(cd,cd + N*N,tmp) - cd;
				res += pos2 - pos1; 
			}
		}
		printf("%d\n",res);
	}
	return 0;
}

  

posted @ 2016-10-23 16:52  zxzhang  阅读(211)  评论(0)    收藏  举报