排序小结
插入排序(O(N2))
//从小到大
void InsertionSort( ElementType A[ ], int N )
{
int j, P;
ElementType Tmp;
for( P = 1; P < N; P++ )
{
Tmp = A[ P ];
for( j = P; j > 0 && A[ j - 1 ] > Tmp; j-- )
A[ j ] = A[ j - 1 ];
A[ j ] = Tmp;
}
}
//从大到小
void InsertionSort( ElementType A[ ], int N )
{
int j, P;
ElementType Tmp;
for( P = N - 2; P >= 0; P-- )
{
Tmp = A[ P ];
for( j = P; j < N - 1 && A[ j + 1 ] > Tmp; j++ )
A[ j ] = A[ j + 1 ];
A[ j ] = Tmp;
}
}
堆排序(2NlogN-O(NloglogN))
#define LeftChild( i ) ( 2 * ( i ) + 1 )
void PercDown( ElementType A[ ], int i, int N )
{
int Child;
ElementType Tmp;
for( Tmp = A[ i ]; LeftChild( i ) < N; i = Child )
{
Child = LeftChild( i );
if( Child != N - 1 && A[ Child + 1 ] > A[ Child ] ) // A[ Child + 1 ] < A[ Child ]
Child++;
if( Tmp < A[ Child ] ) //Tmp > A[ Child ]
A[ i ] = A[ Child ]; //两边的比较同时更改的话,就变成从大到小排序
else
break;
}
A[ i ] =Tmp;
}
void Heapsort( ElementType A[ ], int N )
{
int i;
for( i = N / 2; i >= 0; i-- ) /* BuildHeap */
PercDown( A, i, N );
for( i = N - 1; i > 0; i-- )
{
Swap( &A[ 0 ], &A[ i ] ); /* DeleteMax */
PercDown( A, 0, i );
}
}
归并排序O(NlogN)
void Merge( ElementType A[ ], ElementType TmpArray[ ],int Lpos, int Rpos, int RightEnd )
{
int i, LeftEnd, NumElements, TmpPos;
LeftEnd = Rpos - 1;
TmpPos = Lpos;
NumElements = RightEnd - Lpos + 1;
/* main loop */
while( Lpos <= LeftEnd && Rpos <= RightEnd )
if( A[ Lpos ] <= A[ Rpos ] )
TmpArray[ TmpPos++ ] = A[ Lpos++ ];
else
TmpArray[ TmpPos++ ] = A[ Rpos++ ];
while( Lpos <= LeftEnd ) /* Copy rest of first half */
TmpArray[ TmpPos++ ] = A[ Lpos++ ];
while( Rpos <= RightEnd ) /* Copy rest of second half */
TmpArray[ TmpPos++ ] = A[ Rpos++ ];
/* Copy TmpArray back */
for( i = 0; i < NumElements; i++, RightEnd-- )
A[ RightEnd ] = TmpArray[ RightEnd ];
}
void MSort( ElementType A[ ], ElementType TmpArray[ ],int Left, int Right )
{
int Center;
if( Left < Right )
{
Center = ( Left + Right ) / 2;
MSort( A, TmpArray, Left, Center );
MSort( A, TmpArray, Center + 1, Right );
Merge( A, TmpArray, Left, Center + 1, Right );
}
}
void Mergesort( ElementType A[ ], int N )
{
ElementType *TmpArray;
TmpArray = malloc( N * sizeof( ElementType ) );
if( TmpArray != NULL )
{
MSort( A, TmpArray, 0, N - 1 );
free( TmpArray );
}
else
FatalError( "No space for tmp array!!!" );
}
快速排序O(NlogN)
/* Return median of Left, Center, and Right */
/* Order these and hide the pivot */
//从小到大
ElementType Median3( ElementType A[ ], int Left, int Right )
{
int Center = ( Left + Right ) / 2;
if( A[ Left ] > A[ Center ] )
Swap( &A[ Left ], &A[ Center ] );
if( A[ Left ] > A[ Right ] )
Swap( &A[ Left ], &A[ Right ] );
if( A[ Center ] > A[ Right ] )
Swap( &A[ Center ], &A[ Right ] );
/* Invariant: A[ Left ] <= A[ Center ] <= A[ Right ] */
Swap( &A[ Center ], &A[ Right - 1 ] ); /* Hide pivot */
return A[ Right - 1 ]; /* Return pivot */
}
//从大到小
ElementType Median3( ElementType A[ ], int Left, int Right )
{
int Center = ( Left + Right ) / 2;
if( A[ Left ] < A[ Center ] )
Swap( &A[ Left ], &A[ Center ] );
if( A[ Left ] < A[ Right ] )
Swap( &A[ Left ], &A[ Right ] );
if( A[ Center ] < A[ Right ] )
Swap( &A[ Center ], &A[ Right ] );
/* Invariant: A[ Left ] >= A[ Center ] >= A[ Right ] */
Swap( &A[ Center ], &A[ Left + 1 ] ); /* Hide pivot */
return A[ Left + 1 ]; /* Return pivot */
}
//从小到大
#define Cutoff ( 3 )
void Qsort( ElementType A[ ], int Left, int Right )
{
int i, j;
ElementType Pivot;
if( Left + Cutoff <= Right )
{
Pivot = Median3( A, Left, Right );
i = Left;
j = Right - 1;
for( ; ; )
{
while( A[ ++i ] < Pivot ) { }
while( A[ --j ] > Pivot ) { }
if( i < j )
Swap( &A[ i ], &A[ j ] );
else
break;
}
Swap( &A[ i ], &A[ Right - 1 ] ); /* Restore pivot */
Qsort( A, Left, i - 1 );
Qsort( A, i + 1, Right );
}
else /* Do an insertion sort on the subarray */
InsertionSort( A + Left, Right - Left + 1 );
}
//从大到小
#define Cutoff ( 3 )
void Qsort( ElementType A[ ], int Left, int Right )
{
int i, j;
ElementType Pivot;
if( Left + Cutoff <= Right )
{
Pivot = Median3( A, Left, Right );
i = Left + 1;
j = Right;
for( ; ; )
{
while( A[ ++i ] > Pivot ) { }
while( A[ --j ] < Pivot ) { }
if( i < j )
Swap( &A[ i ], &A[ j ] );
else
break;
}
Swap( &A[ j ], &A[ Left + 1 ] ); /* Restore pivot */
Qsort( A, Left, j - 1 );
Qsort( A, j + 1, Right );
}
else /* Do an insertion sort on the subarray */
InsertionSort( A + Left, Right - Left + 1 );
}
/* This code doesn't work; it's Figure 7.15. */
//A[i] = A[j] = Pivot时,程序死循环
#if 0
/* START: fig7_15.txt */
i = Left + 1;
j = Right - 2;
for( ; ; )
{
while( A[ i ] < Pivot ) i++;
while( A[ j ] > Pivot ) j--;
if( i < j )
Swap( &A[ i ], &A[ j ] );
else
break;
}
#endif
void Quicksort( ElementType A[ ], int N )
{
Qsort( A, 0, N - 1 );
}
┆ 凉 ┆ 暖 ┆ 降 ┆ 等 ┆ 幸 ┆ 我 ┆ 我 ┆ 里 ┆ 将 ┆ ┆ 可 ┆ 有 ┆ 谦 ┆ 戮 ┆ 那 ┆ ┆ 大 ┆ ┆ 始 ┆ 然 ┆
┆ 薄 ┆ 一 ┆ 临 ┆ 你 ┆ 的 ┆ 还 ┆ 没 ┆ ┆ 来 ┆ ┆ 是 ┆ 来 ┆ 逊 ┆ 没 ┆ 些 ┆ ┆ 雁 ┆ ┆ 终 ┆ 而 ┆
┆ ┆ 暖 ┆ ┆ 如 ┆ 地 ┆ 站 ┆ 有 ┆ ┆ 也 ┆ ┆ 我 ┆ ┆ 的 ┆ 有 ┆ 精 ┆ ┆ 也 ┆ ┆ 没 ┆ 你 ┆
┆ ┆ 这 ┆ ┆ 试 ┆ 方 ┆ 在 ┆ 逃 ┆ ┆ 会 ┆ ┆ 在 ┆ ┆ 清 ┆ 来 ┆ 准 ┆ ┆ 没 ┆ ┆ 有 ┆ 没 ┆
┆ ┆ 生 ┆ ┆ 探 ┆ ┆ 最 ┆ 避 ┆ ┆ 在 ┆ ┆ 这 ┆ ┆ 晨 ┆ ┆ 的 ┆ ┆ 有 ┆ ┆ 来 ┆ 有 ┆
┆ ┆ 之 ┆ ┆ 般 ┆ ┆ 不 ┆ ┆ ┆ 这 ┆ ┆ 里 ┆ ┆ 没 ┆ ┆ 杀 ┆ ┆ 来 ┆ ┆ ┆ 来 ┆

浙公网安备 33010602011771号