夹逼法求极限
一、描述
使用夹逼法需要同时满足以下两个条件
- $ g(x) \leq f(x) \leq h(x)$
- $ \lim g(x) = \lim h(x) = A (A \epsilon R)$
因此可知,$ \lim f(x) = A$
二、Example
计算:
\[\lim_{n \rightarrow 0}({\frac{n}{n^2+1}}+{\frac{n}{n^2+2}}+\cdots +{\frac{n}{n^2+(n-1)}}+{\frac{n}{n^2+n}})
\]
解:令
\[f(n) = \frac{n}{n^2+1}+\frac{n}{n^2+2}+\cdots +\frac{n}{n^2+(n-1)}+\frac{n}{n^2+n}
\]
\[g(n) = \frac{n}{n^2+1}+\frac{n}{n^2+1}+\cdots +\frac{n}{n^2+1}+\frac{n}{n^2+1} = \frac{n^2}{n^2+1}
\]
\[h(n) = \frac{n}{n^2+n}+{\frac{n}{n^2+n}}+\cdots +\frac{n}{n^2+n}+\frac{n}{n^2+n} = \frac{n^2}{n^2+n}
\]
因为:
\[ \lim_{n \rightarrow 0} g(n) = \lim_{n \rightarrow 0}\frac{n^2}{n^2+1} = 1
\]
\[ \lim_{n \rightarrow 0} h(n) = \lim_{n \rightarrow 0}\frac{n^2}{n^2+n} = 1
\]
根据夹逼定理:
\[ g(x) \leq f(x) \leq h(x)
\]
\[ \lim g(x) = \lim h(x) = 1
\]
所以:
\[ \lim f(x) =1
\]