夹逼法求极限

一、描述

使用夹逼法需要同时满足以下两个条件

  • $ g(x) \leq f(x) \leq h(x)$
  • $ \lim g(x) = \lim h(x) = A (A \epsilon R)$

因此可知,$ \lim f(x) = A$

二、Example

计算:

\[\lim_{n \rightarrow 0}({\frac{n}{n^2+1}}+{\frac{n}{n^2+2}}+\cdots +{\frac{n}{n^2+(n-1)}}+{\frac{n}{n^2+n}}) \]

解:令

\[f(n) = \frac{n}{n^2+1}+\frac{n}{n^2+2}+\cdots +\frac{n}{n^2+(n-1)}+\frac{n}{n^2+n} \]

\[g(n) = \frac{n}{n^2+1}+\frac{n}{n^2+1}+\cdots +\frac{n}{n^2+1}+\frac{n}{n^2+1} = \frac{n^2}{n^2+1} \]


\[h(n) = \frac{n}{n^2+n}+{\frac{n}{n^2+n}}+\cdots +\frac{n}{n^2+n}+\frac{n}{n^2+n} = \frac{n^2}{n^2+n} \]


因为:

\[ \lim_{n \rightarrow 0} g(n) = \lim_{n \rightarrow 0}\frac{n^2}{n^2+1} = 1 \]

\[ \lim_{n \rightarrow 0} h(n) = \lim_{n \rightarrow 0}\frac{n^2}{n^2+n} = 1 \]

根据夹逼定理:

\[ g(x) \leq f(x) \leq h(x) \]

\[ \lim g(x) = \lim h(x) = 1 \]

所以:

\[ \lim f(x) =1 \]

posted @ 2023-07-03 12:24  ZeroHzzzz  阅读(125)  评论(0)    收藏  举报