数据分析第三周作业

 

# 对数据的分布分析

import pandas as pd
import matplotlib.pyplot as plt 

datafile= 'C:/Users/admin/Desktop/新建文件夹/air_data.csv'  # 航空原始数据,第一行为属性标签

# 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码)
data = pd.read_csv(datafile, encoding = 'utf-8')

# 客户信息类别
# 提取会员入会年份
from datetime import datetime
ffp = data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d'))
ffp_year = ffp.map(lambda x : x.year)
# 绘制各年份会员入会人数直方图
fig = plt.figure(figsize = (8 ,5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False
plt.hist(ffp_year, bins='auto', color='#0504aa')
plt.xlabel('年份')
plt.ylabel('入会人数')
plt.title('各年份会员入会人数           3055郑佰强')
plt.show()
plt.close

# 提取会员不同性别人数
male = pd.value_counts(data['GENDER'])['']
female = pd.value_counts(data['GENDER'])['']
# 绘制会员性别比例饼图
fig = plt.figure(figsize = (7 ,4))  # 设置画布大小
plt.pie([ male, female], labels=['',''], colors=['lightskyblue', 'lightcoral'],
       autopct='%1.1f%%')
plt.title('会员性别比例          3055郑佰强')
plt.show()
plt.close

# 提取不同级别会员的人数
lv_four = pd.value_counts(data['FFP_TIER'])[4]
lv_five = pd.value_counts(data['FFP_TIER'])[5]
lv_six = pd.value_counts(data['FFP_TIER'])[6]
# 绘制会员各级别人数条形图
fig = plt.figure(figsize = (8 ,5))  # 设置画布大小
plt.bar(x=range(3), height=[lv_four,lv_five,lv_six], width=0.4, alpha=0.8, color='skyblue')
plt.xticks([index for index in range(3)], ['4','5','6'])
plt.xlabel('会员等级')
plt.ylabel('会员人数')
plt.title('会员各级别人数                     3055郑佰强')
plt.show()
plt.close()

# 提取会员年龄
age = data['AGE'].dropna()
age = age.astype('int64')
# 绘制会员年龄分布箱型图
fig = plt.figure(figsize = (5 ,10))
plt.boxplot(age, 
            patch_artist=True,
            labels = ['会员年龄'],  # 设置x轴标题
            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色
plt.title('会员年龄分布箱线图              3055郑佰强')
# 显示y坐标轴的底线
plt.grid(axis='y')
plt.show()
plt.close

            

# 乘机信息类别
lte = data['LAST_TO_END']
fc = data['FLIGHT_COUNT']
sks = data['SEG_KM_SUM']

# 绘制最后乘机至结束时长箱线图
fig = plt.figure(figsize = (5 ,8))
plt.boxplot(lte, 
            patch_artist=True,
            labels = ['时长'],  # 设置x轴标题
            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色
plt.title('会员最后乘机至结束时长分布箱线图 3055 郑佰强')
# 显示y坐标轴的底线
plt.grid(axis='y')
plt.show()
plt.close

# 绘制客户飞行次数箱线图
fig = plt.figure(figsize = (5 ,8))
plt.boxplot(fc, 
            patch_artist=True,
            labels = ['飞行次数'],  # 设置x轴标题
            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色
plt.title('会员飞行次数分布箱线图       3055 郑佰强')
# 显示y坐标轴的底线
plt.grid(axis='y')
plt.show()
plt.close

# 绘制客户总飞行公里数箱线图
fig = plt.figure(figsize = (5 ,10))
plt.boxplot(sks, 
            patch_artist=True,
            labels = ['总飞行公里数'],  # 设置x轴标题
            boxprops = {'facecolor':'lightblue'})  # 设置填充颜色
plt.title('客户总飞行公里数箱线图 3055 郑佰强')
# 显示y坐标轴的底线
plt.grid(axis='y')
plt.show()
plt.close

                                    

import numpy as np
import random 
import matplotlib.pyplot as plt 

def distance(point1, point2):  # 计算距离(欧几里得距离)
    return np.sqrt(np.sum((point1 - point2) ** 2))

def k_means(data, k, max_iter=10000):
    centers = {}  # 初始聚类中心
    # 初始化,随机选k个样本作为初始聚类中心。 random.sample(): 随机不重复抽取k个值
    n_data = data.shape[0]   # 样本个数
    for idx, i in enumerate(random.sample(range(n_data), k)):
        # idx取值范围[0, k-1],代表第几个聚类中心;  data[i]为随机选取的样本作为聚类中心
        centers[idx] = data[i]  

    # 开始迭代
    for i in range(max_iter):  # 迭代次数
        print("开始第{}次迭代".format(i+1))
        clusters = {}    # 聚类结果,聚类中心的索引idx -> [样本集合]
        for j in range(k):  # 初始化为空列表
            clusters[j] = []
            
        for sample in data:  # 遍历每个样本
            distances = []  # 计算该样本到每个聚类中心的距离 (只会有k个元素)
            for c in centers:  # 遍历每个聚类中心
                # 添加该样本点到聚类中心的距离
                distances.append(distance(sample, centers[c])) 
            idx = np.argmin(distances)  # 最小距离的索引
            clusters[idx].append(sample)   # 将该样本添加到第idx个聚类中心
            
        pre_centers = centers.copy()  # 记录之前的聚类中心点

        for c in clusters.keys():
            # 重新计算中心点(计算该聚类中心的所有样本的均值)
            centers[c] = np.mean(clusters[c], axis=0)
  
        is_convergent = True
        for c in centers:
            if distance(pre_centers[c], centers[c]) > 1e-8:  # 中心点是否变化
                is_convergent = False
                break
        if is_convergent == True:  
            # 如果新旧聚类中心不变,则迭代停止
            break
    return centers, clusters

def predict(p_data, centers):  # 预测新样本点所在的类
    # 计算p_data 到每个聚类中心的距离,然后返回距离最小所在的聚类。
    distances = [distance(p_data, centers[c]) for c in centers]  
    return np.argmin(distances)
x=np.random.randint(0, high=10, size=(200,2))
centers,clusters=k_means(x,3)
 

print(centers)
clusters

for center in centers:
    plt.scatter(centers[center][0],centers[center][1],marker='*',s=150)

    
colors=['r','b','y','m','c','g']
for c in clusters:
    for point in clusters[c]:
         plt.scatter(point[0],point[1],c=colors[c])

import numpy as np
import pandas as pd

datafile = 'D:/桌面文件/python图表/air_data.csv'  # 航空原始数据路径
cleanedfile = 'D:/桌面文件/python图表/data_cleaned.csv'  # 数据清洗后保存的文件路径

# 读取数据
airline_data = pd.read_csv(datafile,encoding = 'utf-8')
print('原始数据的形状为:',airline_data.shape)

# 去除票价为空的记录
airline_notnull = airline_data.loc[airline_data['SUM_YR_1'].notnull() & 
                                   airline_data['SUM_YR_2'].notnull(),:]
print('删除缺失记录后数据的形状为:',airline_notnull.shape)

# 只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录。
index1 = airline_notnull['SUM_YR_1'] != 0
index2 = airline_notnull['SUM_YR_2'] != 0
index3 = (airline_notnull['SEG_KM_SUM']> 0) & (airline_notnull['avg_discount'] != 0)
index4 = airline_notnull['AGE'] > 100  # 去除年龄大于100的记录
airline = airline_notnull[(index1 | index2) & index3 & ~index4]
print('数据清洗后数据的形状为:',airline.shape)

airline.to_csv(cleanedfile)  # 保存清洗后的数据

import pandas as pd
import numpy as np

# 读取数据清洗后的数据
cleanedfile = 'D:/桌面文件/python图表/data_cleaned.csv'  # 数据清洗后保存的文件路径
airline = pd.read_csv(cleanedfile, encoding = 'utf-8')
# 选取需求属性
airline_selection = airline[['FFP_DATE','LOAD_TIME','LAST_TO_END',
                                     'FLIGHT_COUNT','SEG_KM_SUM','avg_discount']]
print('                   3055郑佰强')
print('筛选的属性前5行为:\n',airline_selection.head())



# 代码7-8

# 构造属性L
L = pd.to_datetime(airline_selection['LOAD_TIME']) - \
pd.to_datetime(airline_selection['FFP_DATE'])
L = L.astype('str').str.split().str[0]
L = L.astype('int')/30

# 合并属性
airline_features = pd.concat([L,airline_selection.iloc[:,2:]],axis = 1)
airline_features.columns = ['L','R','F','M','C']
print('构建的LRFMC属性前5行为:\n',airline_features.head())

# 数据标准化
from sklearn.preprocessing import StandardScaler
data = StandardScaler().fit_transform(airline_features)
np.savez('D:/桌面文件/python图表/airline_scale.npz',data)
print('标准化后LRFMC五个属性为:\n',data[:5,:])

import pandas as pd
import numpy as np


from sklearn.cluster import KMeans  # 导入kmeans算法

# 读取标准化后的数据
airline_scale = np.load('D:/桌面文件/python图表/airline_scale.npz')['arr_0']
k = 5  # 确定聚类中心数

# 构建模型,随机种子设为123
kmeans_model = KMeans(n_clusters = k,random_state=123)
fit_kmeans = kmeans_model.fit(airline_scale)  # 模型训练

# 查看聚类结果
kmeans_cc = kmeans_model.cluster_centers_  # 聚类中心
print('各类聚类中心为:\n',kmeans_cc)
kmeans_labels = kmeans_model.labels_  # 样本的类别标签
print('各样本的类别标签为:\n',kmeans_labels)
r1 = pd.Series(kmeans_model.labels_).value_counts()  # 统计不同类别样本的数目
print('最终每个类别的数目为:\n',r1)
# 输出聚类分群的结果
cluster_center = pd.DataFrame(kmeans_model.cluster_centers_,\
             columns = ['ZL','ZR','ZF','ZM','ZC'])   # 将聚类中心放在数据框中
cluster_center.index = pd.DataFrame(kmeans_model.labels_ ).\
                  drop_duplicates().iloc[:,0]  # 将样本类别作为数据框索引
print(cluster_center)


# 代码7-10

%matplotlib inline
import matplotlib.pyplot as plt 
# 客户分群雷达图
labels = ['ZL','ZR','ZF','ZM','ZC']
legen = ['客户群' + str(i + 1) for i in cluster_center.index]  # 客户群命名,作为雷达图的图例
lstype = ['-','--',(0, (3, 5, 1, 5, 1, 5)),':','-.']
kinds = list(cluster_center.iloc[:, 0])
# 由于雷达图要保证数据闭合,因此再添加L列,并转换为 np.ndarray
cluster_center = pd.concat([cluster_center, cluster_center[['ZL']]], axis=1)
centers = np.array(cluster_center.iloc[:, 0:])

# 分割圆周长,并让其闭合
n = len(labels)
angle = np.linspace(0, 2 * np.pi, n, endpoint=False)
angle = np.concatenate((angle, [angle[0]]))
labels = np.concatenate((labels, [labels[0]]))
# 绘图
fig = plt.figure(figsize = (8,6))
ax = fig.add_subplot(111, polar=True)  # 以极坐标的形式绘制图形
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 
# 画线
for i in range(len(kinds)):
    ax.plot(angle, centers[i], linestyle=lstype[i], linewidth=2, label=kinds[i])
# 添加属性标签
ax.set_thetagrids(angle * 180 / np.pi, labels)
plt.title('客户特征分析雷达图              3055郑佰强')
plt.legend(legen)
plt.show()
plt.close

 

 

 

# 提取属性并合并为新数据集
data_corr = data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END',
                  'SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']]
age1 = data['AGE'].fillna(0)
data_corr['AGE'] = age1.astype('int64')
data_corr['ffp_year'] = ffp_year

# 计算相关性矩阵
dt_corr = data_corr.corr(method = 'pearson')
print('相关性矩阵为:\n',dt_corr)

# 绘制热力图
import seaborn as sns
plt.subplots(figsize=(10, 10)) # 设置画面大小 
sns.heatmap(dt_corr, annot=True, vmax=1, square=True, cmap='Blues')
plt.title('热力图 ')
plt.show()
plt.close

 

 

import pandas as pd

datafile= 'D:/桌面文件/python图表/air_data.csv'  # 航空原始数据,第一行为属性标签
resultfile = 'D:/桌面文件/python图表/explore.csv'  # 数据探索结果表

# 读取原始数据,指定UTF-8编码(需要用文本编辑器将数据装换为UTF-8编码)
data = pd.read_csv(datafile, encoding = 'utf-8')

# 包括对数据的基本描述,percentiles参数是指定计算多少的分位数表(如1/4分位数、中位数等)
explore = data.describe(percentiles = [], include = 'all').T  # T是转置,转置后更方便查阅
explore['null'] = len(data)-explore['count']  # describe()函数自动计算非空值数,需要手动计算空值数

explore = explore[['null', 'max', 'min']]
explore.columns = ['空值数', '最大值', '最小值']  # 表头重命名
'''
这里只选取部分探索结果。
describe()函数自动计算的字段有count(非空值数)、unique(唯一值数)、top(频数最高者)、
freq(最高频数)、mean(平均值)、std(方差)、min(最小值)、50%(中位数)、max(最大值)
'''

explore.to_csv(resultfile)  # 导出结果

 

posted on 2023-03-12 21:05  什么都不会的萌新  阅读(45)  评论(0)    收藏  举报

导航