HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了。
/** @Date : 2017-09-15 18:21:35
* @FileName: HDU 1695 容斥 或 莫比乌斯反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
LL pri[N];
LL mu[N];
LL sum[N];
int c = 0;
bool vis[N];
void prime()
{
MMF(vis);
MMF(sum);
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
mu[i * pri[j]] = 0;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
sum[0] = 0;
for(int i = 1; i < N; i++)
sum[i] += sum[i - 1] + mu[i];
}
LL get_sum(LL n, LL m)
{
if(n > m) swap(n, m);
int mi = min(n, m);
LL ans = 0;
for(int i = 1, last; i <= mi; i++, last = last + 1)
{
last = min(n/(n/i), m/(m/i));//由于有重复情况 不能直接分块?
ans += (LL)(n / i) * (m / i) * (sum[i] - sum[i - 1]);
}
return ans;
}
int main()
{
int T;
prime();
cin >> T;
int cnt = 0;
while(T--)
{
LL a, b, c, d, k;
scanf("%lld%lld%lld%lld%lld", &a, &b, &c, &d, &k);
if(k == 0)
{
printf("Case %d: 0\n", ++cnt);
continue;
}
a = (a - 1) / k;
b = b / k;
c = (c - 1) / k;
d = d / k;
LL ans = get_sum(a, c) + get_sum(b, d) - get_sum(a, d) - get_sum(b, c) - get_sum(min(b,d), min(b,d)) / 2;
printf("Case %d: %lld\n", ++cnt, ans);
/*LL ans = 0;
LL t = 0;
for(int i = 1; i <= b; i++)
ans += (b / i) * (d / i) * mu[i];
for(int i = 1; i <= d; i++)
t += (min(b,d)/ i) * (min(b, d) / i) * mu[i];
printf("Case %d: %lld\n", ++cnt, ans - t / 2);*/
}
return 0;
}

浙公网安备 33010602011771号