LightOJ 1244 - Tiles 猜递推+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1244
题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法。\(N <= 10^9 \)
思路:首先手写出前几项,猜出递推式,如果真有比赛出这种题,又不能上网进工具站查是吧?N比较大显然用矩阵快速幂优化一下
/** @Date : 2016-12-18-22.44
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 1e4 + 7;
struct matrix
{
LL mt[3][3];
void init()
{
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
mt[i][j] = 0;
}
void cig()
{
for(int i = 0; i < 3; i++)
mt[i][i] = 1;
}
};
matrix mul(matrix a, matrix b)
{
matrix c;
c.init();
for(int i = 0; i < 3; i++)
{
for(int j = 0; j < 3; j++)
{
for(int k = 0; k < 3; k++)
{
c.mt[i][j] += a.mt[i][k] * b.mt[k][j];
c.mt[i][j] %= mod;
}
}
}
return c;
}
matrix fpow(matrix a, LL n)
{
matrix r;
r.init();
r.cig();
while(n > 0)
{
if(n & 1)
r = mul(r, a);
a = mul(a, a);
n >>= 1;
}
return r;
}
LL fun(LL n)
{
if(n < 3)
{
return n;
}
matrix base;
base.init();
base.mt[0][0] = 2;
base.mt[0][2] = 1;
base.mt[1][0] = 1;
base.mt[2][1] = 1;
base = fpow(base, n - 3);
return (base.mt[0][0] * 5 + base.mt[0][1] * 2 + base.mt[0][2]) % mod;
}
int main()
{
int T;
int cnt = 0;
cin >> T;
while(T--)
{
LL n;
scanf("%lld", &n);
LL ans = fun(n);
printf("Case %d: %lld\n", ++cnt, ans);
}
return 0;
}

浙公网安备 33010602011771号