洛谷 - P2568 - GCD - 欧拉函数

https://www.luogu.org/problemnew/show/P2568

统计n以内gcd为质数的数的个数。

\(\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p]\)

一开始还以为要莫比乌斯反演.

推了半天不知道怎么求,遂看题解:

$\sum\limits_p \sum\limits_{i=1}{n}\sum\limits_{j=1} [gcd(i,j)p] =\sum\limits_p \sum\limits_{i=1}{\frac{n}{p}}\sum\limits_{j=1}{p}} [gcd(i,j)1] $

一个有序数对 \((i,j),(i>j)\)\(i\) 互质的数 \(j\) 的个数也就是 \(\varphi(i)\) ,画一个正方形可以知道对调 \((i,j)\) 求出一样的结果.

但是当 $ i1&&j1 $ 时被重复计数了,要减去

那么答案就是 $\sum\limits_p (2*\sum\limits_{i=1}^{\frac{n}{p}}\varphi(i) - 1) $


#include<bits/stdc++.h>
using namespace std;
#define ll long long

#define N 10000005

int phi[N],pri[N],cntpri=0;
bool notpri[N];

ll prefix[N];

void sieve_phi(int n) {
    notpri[1]=phi[1]=1;
    prefix[0]=0;
    prefix[1]=1;
    for(int i=2; i<=n; i++) {
        if(!notpri[i])
            pri[++cntpri]=i,phi[i]=i-1;
        for(int j=1; j<=cntpri&&i*pri[j]<=n; j++) {
            notpri[i*pri[j]]=1;
            if(i%pri[j])
                phi[i*pri[j]]=phi[i]*phi[pri[j]];
            else {
                phi[i*pri[j]]=phi[i]*pri[j];
                break;
            }
        }
        prefix[i]=prefix[i-1]+phi[i];
    }
}

ll solve(ll n){
    ll ans=0;
    for(int i=1;i<=cntpri;i++){
        if(pri[i]<=n){
            ans+=2ll*(prefix[n/pri[i]])-1ll;
        }
    }
    return ans;
}

int main() {
    sieve_phi(10000000+1);
    int n;
    while(cin>>n) {
        ll ans=solve(n);
        cout<<ans<<endl;
    }
}

posted @ 2019-04-07 20:35  韵意  阅读(137)  评论(0编辑  收藏  举报