多项式基本操作
多项式的简单四则运算
有加减乘除
加减比较native
多项式乘法
FFT:在\(O(nlogn)\)的时间内实现多项式的系数表示形式与点值表示形式的转换,作用域:实数
NTT:在\(O(nlogn)\)的时间内实现多项式的系数表示形式与点值表示形式的转换,作用域:有原根的模
MTT:
在实数域上FFT:
有一个玩意叫做n次单位根\(W_n^i\)
考虑把这个玩意带入进去,观察一下整个式子
考虑如何将点值表达式转换为系数表示
考虑单位根的奇妙性质:
考虑将n次单位根的倒数带进去得到的点值表达式
回到FFT
上面的递归,每次都要按奇偶划分系数,实际上常数是非常的的
考虑更简便的方法:
不妨考虑整个系数序列递归到叶子的情况
发现叶子的系数分布,是0到\(n - 1\)的二进制倒置后的值
于是可以\(O(n)\)递推
然后在FFT里面以 长度,起点做就好了
代码实现如下
#include<bits/stdc++.h>
#define MAXN 2000005
typedef double ll;
const ll PI = acos(-1.0);
using namespace std;
int n,m;
int lim,len;
int res[MAXN];
struct node{ll dx,dy;}a[MAXN],b[MAXN],c[MAXN];
node operator + (node A , node B){return (node){A.dx + B.dx , A.dy + B.dy};}
node operator - (node A , node B){return (node){A.dx - B.dx , A.dy - B.dy};}
node operator * (node A , node B){return (node){A.dx * B.dx - A.dy * B.dy , A.dx * B.dy + A.dy * B.dx};}
node wn(double sz , int tp){
	ll zz = 2.0 * PI / sz;
	if(tp == (-1))return (node){cos(zz) , -sin(zz)};
	return (node){cos(zz) , sin(zz)};
}
void fft(node f[] , int tp){
	for(int i = 0 ; i < len ; i++)if(i < res[i])swap(f[i] , f[res[i]]);
	for(int k = 1 ; k < len ; k = k + k){
		node w1 = wn(k << 1 , tp) , w , A , B;
		for(int i = 0 ; i < len ; i = i + k + k){
			w = (node){1 , 0};
			for(int j = 0 ; j < k ; j++ , w = w * w1){
				A = f[i + j] , B = f[i + j + k] * w;
				f[i + j] = A + B;
				f[i + j + k] = A - B;
			}	
		}
	}
	if(tp == (-1))for(int i = 0 ; i < len ; i++)f[i].dx /= (len * 1.0);
	
}
int main(){
	scanf("%d%d" , &n , &m);
	for(int i = 0 ; i <= n ; i++)scanf("%lf" , &a[i].dx);
	for(int i = 0 ; i <= m ; i++)scanf("%lf" , &b[i].dx);
	len = 1 , lim = 0;
	while(len <= (n + m + 2))len = len + len , lim++;
	for(int i = 1 ; i < len ; i++){
		res[i] = (res[i >> 1] >> 1) | ((i & 1) << (lim - 1));
	}
	fft(a , 1);
	fft(b , 1);
	for(int i = 0 ; i < len ; i++)c[i] = a[i] * b[i];
	fft(c , -1);
	for(int i = 0 ; i < n + m + 1 ; i++)printf("%d " , (int)(c[i].dx + 0.5));
	
}
考虑在模意义下怎么做
考虑998244353的原根,有一个为3
经过一些数学推导,发现原根在模意义下与单位根的性质相似
有\(w_n = g^{\frac{p - 1}{n}}\ mod p\)
其余的与单位根相似,不明白为什么之前写的常数这么大
代码如下:
#include<bits/stdc++.h>
#define MAXN 5000005
typedef long long ll;
const ll mod = 998244353;
const ll g = 3;
using namespace std;
int n,m,limit,len;
ll a[MAXN],b[MAXN],c[MAXN];
int res[MAXN];
int poww(ll x , int y){
	ll zz = 1;
	while(y){
		if(y & 1)zz = 1ll * x * zz % mod;
		x = (1ll * x * x) % mod;
		y = y >> 1;
	}
	return zz;
}
//wn = 
void NTT(ll f[] , int tp){
	for(int i = 0 ; i < len ; i++)if(i < res[i])swap(f[i] , f[res[i]]);
	for(int k = 1 ; k < len ; k = k + k){
		ll w1 = poww(3 , (mod - 1) / (k << 1)) , w , A , B;
		if(tp == (-1))w1 = poww(w1 , mod - 2);
		for(int i = 0 ; i < len ; i = i + k + k){
			w = 1;
			for(int j = 0 ; j < k ; j++ , w = w * w1 % mod){
				A = f[i + j] , B = f[i + j + k] * w % mod;
				f[i + j] = ((A + B) % mod + mod) % mod;
				f[i + j + k] = ((A - B) % mod + mod) % mod;
			}	
		}
	}
	if(tp == 1)return;
	ll zz = poww(len , mod - 2);
	for(int i = 0 ; i < len ; i++)f[i] = (1ll * f[i] * zz) % mod;
	
}
int main(){
	scanf("%d%d" , &n , &m);
	for(int i = 0 ; i <= n ; i++)scanf("%lld" , &a[i]);
	for(int i = 0 ; i <= m ; i++)scanf("%lld" , &b[i]);
	len = 1 , limit = 0;
	while(len <= (n + m + 1))len = len + len , limit++;
	for(int i = 1 ; i < len ; i++)res[i] = (res[i >> 1] >> 1) | ((i & 1) << (limit - 1));
	NTT(a , 1);
	NTT(b , 1);
	for(int i = 0 ; i < len ; i++)c[i] = 1ll * a[i] * b[i] % mod;
	NTT(c , -1);
	for(int i = 0 ; i < n + m + 1 ; i++)printf("%lld " , c[i]);
	
	
}
P1919 【模板】A*B Problem 升级版(FFT 快速傅里叶变换)
板子题
#include<bits/stdc++.h>
#define MAXN 5000005
typedef long long ll;
const ll mod = 998244353;
const ll g = 3;
using namespace std;
int n,m,limit,len,res[MAXN];
ll a[MAXN],b[MAXN],c[MAXN];
int sz;
char s[MAXN];
ll poww(ll x , int y){
	ll zz = 1;
	while(y){
		if(y & 1)zz = zz * x % mod;
		x = x * x % mod;
		y = y >> 1;
	}
	return zz;
}
void NTT(ll f[] , int tp){
	for(int i = 0 ; i < len ; i++)if(i < res[i])swap(f[i] , f[res[i]]);
	for(int k = 1 ; k < len ; k = k + k){
		ll w1 = poww(3 , (mod - 1) / (k << 1)) , w , A , B;
		if(tp == (-1))w1 = poww(w1 , mod - 2);
		for(int i = 0 ; i < len ; i = i + k + k){
			w = 1;
			for(int j = 0 ; j < k ; j++ , w = w * w1 % mod){
				A = f[i + j] , B = f[i + j + k] * w % mod;
				f[i + j] = ((A + B) % mod + mod) % mod;
				f[i + j + k] = ((A - B) % mod + mod) % mod;
			}	
		}
	}
	if(tp == 1)return;
	ll zz = poww(len , mod - 2);
	for(int i = 0 ; i < len ; i++)f[i] = (1ll * f[i] * zz) % mod;
}
int main(){
	scanf("%s" , s) , sz = strlen(s) , n = sz - 1;
	for(int i = 0 ; i <= n ; i++)a[i] = s[n - i] - '0';
	scanf("%s" , s) , sz = strlen(s) , m = sz - 1;
	for(int i = 0 ; i <= m ; i++)b[i] = s[m - i] - '0';
	len = 1 , limit = 0;
	while(len <= (n + m + 4)){
		len = len + len , limit++;	
	}
	for(int i = 1 ; i < len ; i++)res[i] = (res[i >> 1] >> 1) | ((i & 1) << (limit - 1));
	
	NTT(a , 1);
	NTT(b , 1);
	for(int i = 0 ; i < len ; i++)c[i] = (a[i] * b[i] % mod + mod) % mod;
	NTT(c , -1);
	
	
	for(int i = 0 ; i < n + m + 1 ; i++){
		c[i + 1] = c[i + 1] + c[i] / 10 , c[i] %= 10;	
	}
	int len = n + m + 1;
	while(c[len] >= 10)c[len + 1] = c[len + 1] + c[len] / 10 , c[len] %= 10 , len++;
	while(c[len] == 0)len--;
	for(int i = len ; i >= 0 ; i--)cout<<c[i];
}
分治FFT
例题:lgP4721 【模板】分治 FFT
考虑cdq分治
递归区间为\([L,R] , mid = (L + R) / 2\)
考虑\([L , mid]\)对区间\([mid + 1 , R]\)的贡献
发现这就是一个很简单的卷积形式
直接类似于cdq分治的形式就好了
复杂度大概是\(O(nlog^2n)\)
代码如下:lgP4721
#include<bits/stdc++.h>
#define MAXN 500005
typedef long long ll;
const ll mod = 998244353;
using namespace std;
int n;
ll g[MAXN],ans[MAXN];
ll poww(ll x , int y){
	ll zz = 1;
	while(y){
		if(y & 1)zz = zz * x % mod;
		x = x * x % mod;
		y = y >> 1;
	}
	return zz;
}
int limit,len;
ll a[MAXN],b[MAXN],res[MAXN];
void NTT(ll f[] , int tp){
	for(int i = 1 ; i < len ; i++)res[i] = ((res[i >> 1] >> 1) | ((i & 1) << (limit - 1)));
	for(int i = 0 ; i < len ; i++)if(i < res[i])swap(f[i] , f[res[i]]);
		for(int k = 1 ; k < len ; k = k + k){
			ll w1 = poww(3 , (mod - 1) / (k << 1)) , w , A , B;
			if(tp == (-1))w1 = poww(w1 , mod - 2);
			for(int i = 0 ; i < len ; i = i + k + k){
				w = 1;
				for(int j = 0 ; j < k ; j++ , w = w * w1 % mod){
					A = f[i + j] , B = f[i + j + k] * w % mod;
					f[i + j] = ((A + B) % mod + mod) % mod;
					f[i + j + k] = ((A - B) % mod + mod) % mod;
				}	
			}
		}
	if(tp == 1)return;
	ll zz = poww(len , mod - 2);
	for(int i = 0 ; i < len ; i++)f[i] = (1ll * f[i] * zz) % mod;
}
void cdq(int l , int r){
	if(l == r)return;
	int mid = (l + r) >> 1;
	cdq(l , mid);
	for(int i = l ; i <= mid ; i++)a[i - l] = ans[i] , b[i - l] = g[i - l];
	for(int i = mid + 1 ; i <= r ; i++)a[i - l] = 0 , b[i - l] = g[i - l];
	len = 1 , limit = 0;
	while(len <= (r - l + 1))len = len + len , limit++;
	for(int i = r - l + 1 ; i <= len ; i++)a[i] = b[i] = 0;
	NTT(a , 1) , NTT(b , 1);
	for(int i = 0 ; i < len ; i++)a[i] = (a[i] * b[i] % mod + mod) % mod;
	NTT(a , -1);
	for(int i = mid + 1 ; i <= r ; i++)ans[i] = (ans[i] + a[i - l]) % mod;
	cdq(mid + 1 , r);
	
}
int main(){
	scanf("%d" , &n) , ans[0] = 1;
	for(int i = 1 ; i < n ; i++)scanf("%d" , &g[i]);
	len = 1;while(len < n)len = len + len;
	cdq(0 , len - 1);
	for(int i = 0 ; i < n ; i++)cout<<ans[i]<<" ";
}
也有多项式求逆的做法,之后补
任意模数多项式乘法(MTT)
这个东西一般处理任意模数,可以用于适当的加强题目
1.把答案在三个有原根的模数下求出来,然后对于每一个答案都做一次CRT,9次
2.分解每一个数成\(\sqrt{mod} * p + q = a_i\)的形式 , 然后做多项式乘法暴力乘
3.MTT(论文里面的玩意)
方法2实现
#include<bits/stdc++.h>
#define MAXN 400005
typedef long double ll;
typedef long long LL;
const ll PI = acos(-1.0);
using namespace std;
int n,m,limit,len;
int res[MAXN];
LL ans[MAXN],part = 32768,p;
struct node{ll dx,dy;}a1[MAXN],b1[MAXN],a2[MAXN],b2[MAXN],X[MAXN];
node operator + (node A , node B){return (node){A.dx + B.dx , A.dy + B.dy};}
node operator - (node A , node B){return (node){A.dx - B.dx , A.dy - B.dy};}
node operator * (node A , node B){return (node){A.dx * B.dx - A.dy * B.dy , A.dx * B.dy + A.dy * B.dx};}
node wn(ll sz , int tp){
	ll zz = 2.0 * PI / sz;
	if(tp == (-1))return (node){cos(zz) , -sin(zz)};
	return (node){cos(zz) , sin(zz)};
}
void fft(node f[] , int tp){
	for(int i = 0 ; i < len ; i++)if(i < res[i])swap(f[i] , f[res[i]]);
	for(int k = 1 ; k < len ; k = k + k){
		node w1 = wn(k << 1 , tp) , w , A , B;
		for(int i = 0 ; i < len ; i = i + k + k){
			w = (node){1 , 0};
			for(int j = 0 ; j < k ; j++ , w = w * w1){
				A = f[i + j] , B = f[i + j + k] * w;
				f[i + j] = A + B;
				f[i + j + k] = A - B;
			}	
		}
	}
}
void solve(node A[] , node B[] , LL res){
	for(int i = 0 ; i < len ; i++)X[i].dx = X[i].dy = 0;
	for(int i = 0 ; i < len ; i++)X[i] = A[i] * B[i];
	fft(X , -1);
    for(int i=0;i<=n+m;++i)(ans[i]+=(LL)(X[i].dx/len+0.5)%p*res%p)%=p;
}
void MTT(node f1[] , node f2[] , node g1[] , node g2[]){
	fft(f1 , 1) , fft(f2 , 1) , fft(g1 , 1) , fft(g2 , 1);
	solve(f1 , g1 , part * part);
	solve(f1 , g2 , part);
	solve(f2 , g1 , part);
	solve(f2 , g2 , 1);
	for(int i = 0 ; i <= n + m ; i++){
		cout<<(ans[i] % p + p) % p<<" ";
	}
}
int main(){
	scanf("%d%d%lld" , &n , &m , &p);LL zz;
	for(int i = 0 ; i <= n ; i++){
		scanf("%lld" , &zz);
		a1[i].dx = zz / part;
		a2[i].dx = zz % part;		
	}
	for(int i = 0 ; i <= m ; i++){
		scanf("%lld" , &zz);
		b1[i].dx = zz / part;
		b2[i].dx = zz % part;		
	}
	len = 1 , limit = 0;
	while(len <= (n + m + 2))len = len + len , limit++;
	for(int i = 1 ; i < len ; i++)res[i] = (res[i >> 1] >> 1) | ((i & 1) << (limit - 1));
	MTT(a1 , a2 , b1 , b2);
	
}
多项式乘法逆
给定你一个n次多项式\(F(x)\),让你求一个多项式\(G(x)\)满足\(F(x) * G(x) = 1\ (mod\ x^n)\)
具体而言,相当于找一个多项式函数关于乘法意义下的逆元
于是就可以递归的去构造了
#include<bits/stdc++.h>
#define MAXN 400005
typedef long long ll;
const ll mod = 998244353;
using namespace std;
int n,len,limit,res[MAXN];
ll a[MAXN],c[MAXN];
ll H[MAXN],G[MAXN];
ll poww(ll x , int y){
	ll zz = 1;
	while(y){
		if(y & 1)zz = zz * x % mod;
		x = x * x % mod;
		y = y >> 1;
	}
	return zz;
}
void NTT(ll f[] , int tp){
	for(int i = 1 ; i < len ; i++)res[i] = (res[i >> 1] >> 1) | ((i & 1) << (limit - 1));
	for(int i = 0 ; i < len ; i++)if(i < res[i])swap(f[i] , f[res[i]]);
	for(int k = 1 ; k < len ; k = k + k){
		ll w1 = poww(3 , (mod - 1) / (k << 1)) , w , A , B;
		if(tp == (-1))w1 = poww(w1 , mod - 2);
		for(int i = 0 ; i < len ; i = i + k + k){
			w = 1;
			for(int j = 0 ; j < k ; j++ , w = w * w1 % mod){
				A = f[i + j] , B = f[i + j + k] * w % mod;
				f[i + j] = ((A + B) % mod + mod) % mod;
				f[i + j + k] = ((A - B) % mod + mod) % mod;
			}	
		}
	}
	if(tp == 1)return;
	ll zz = poww(len , mod - 2);
	for(int i = 0 ; i < len ; i++)f[i] = (1ll * f[i] * zz) % mod;
}
void solve(int LEN , int L){
	if(LEN == 1)return (void)(G[0] = poww(a[0] , mod - 2)); 
	solve((LEN + 1) >> 1 , L - 1);
	swap(H , G);
	len = 1 , limit = 0;
	while(len < (LEN << 1))len = len << 1 , limit++;
	for(int i = 0 ; i < LEN ; i++)G[i] = c[i] = 0;
	for(int i = 0 ; i < LEN ; i++)c[i] = a[i];
	for(int i = LEN ; i < len ; i++)c[i] = 0;
	NTT(c , 1) , NTT(H , 1);
	for(int i = 0 ; i < len ; i++)G[i] = ((H[i] * ((2ll - H[i] * c[i]) % mod + mod) % mod) % mod + mod) % mod;
	NTT(G , -1);
	for(int i = LEN ; i < len ; i++)G[i] = 0;
}
int main(){
	scanf("%d" , &n);for(int i = 0 ; i < n ; i++)scanf("%lld" , &a[i]);
	solve(n , limit);
	for(int i = 0 ; i < n ; i++)cout<<G[i]<<" ";
}
多项式ln,exp
引入对多项式的微分求导运算就可以做了
多项式ln
#include<bits/stdc++.h>
#define MAXN 400005
typedef long long ll;
const ll mod = 998244353;
using namespace std;
int n,m,len,limit,res[MAXN];
ll a[MAXN],c[MAXN];
ll H[MAXN],G[MAXN];
ll poww(ll x , int y){
	ll zz = 1;
	while(y){
		if(y & 1)zz = zz * x % mod;
		x = x * x % mod;
		y = y >> 1;
	}
	return zz;
}
void NTT(ll f[] , int tp){
	for(int i = 1 ; i < len ; i++)res[i] = (res[i >> 1] >> 1) | ((i & 1) << (limit - 1));
	for(int i = 0 ; i < len ; i++)if(i < res[i])swap(f[i] , f[res[i]]);
	for(int k = 1 ; k < len ; k = k + k){
		ll w1 = poww(3 , (mod - 1) / (k << 1)) , w , A , B;
		if(tp == (-1))w1 = poww(w1 , mod - 2);
		for(int i = 0 ; i < len ; i = i + k + k){
			w = 1;
			for(int j = 0 ; j < k ; j++ , w = w * w1 % mod){
				A = f[i + j] , B = f[i + j + k] * w % mod;
				f[i + j] = ((A + B) % mod + mod) % mod;
				f[i + j + k] = ((A - B) % mod + mod) % mod;
			}	
		}
	}
	if(tp == 1)return;
	ll zz = poww(len , mod - 2);
	for(int i = 0 ; i < len ; i++)f[i] = (1ll * f[i] * zz) % mod;
}
void solve(int LEN){
	if(LEN == 1)return (void)(G[0] = poww(a[0] , mod - 2)); 
	solve((LEN + 1) >> 1);
	swap(H , G);
	len = 1 , limit = 0;
	while(len < (LEN << 1))len = len << 1 , limit++;
	for(int i = 0 ; i < LEN ; i++)G[i] = c[i] = 0;
	for(int i = 0 ; i < LEN ; i++)c[i] = a[i];
	for(int i = LEN ; i < len ; i++)c[i] = 0;
	NTT(c , 1) , NTT(H , 1);
	for(int i = 0 ; i < len ; i++)G[i] = ((H[i] * ((2ll - H[i] * c[i]) % mod + mod) % mod) % mod + mod) % mod;
	NTT(G , -1);
	for(int i = LEN ; i < len ; i++)G[i] = 0;
}
int main(){
	scanf("%d" , &n) , m = n - 1;for(int i = 0 ; i < n ; i++)scanf("%lld" , &a[i]);
	solve(n);memset(H , 0 , sizeof(H));
	for(int i = 1 ; i < n ; i++)H[i - 1] = ((a[i] * (1ll * i)) % mod + mod) % mod;
	len = 1 , limit = 0;
	while(len <= (n + m + 1))len = len + len , limit++;
	NTT(H , 1) , NTT(G , 1);
	for(int i = 0 ; i < len ; i++)H[i] = (H[i] * G[i] % mod + mod) % mod;
	NTT(H , -1);memset(G , 0 , sizeof(G));
	for(int i = 0 ; i < len ; i++){
		G[i + 1] = (H[i] * poww(i + 1 , mod - 2) % mod + mod) % mod;
	}
	for(int i = 0 ; i < n ; i++)cout<<G[i]<<" ";
	
}
牛顿迭代
实数域上的牛顿迭代
常用来逼近某一些函数的零点
按上述过程反复迭代即可
函数域上的牛顿迭代,虽然上下两个部分关系并不大,但思想是类似的
注意,这里的f虽然是函数,但我们把它当成常数来处理
多项式求逆就是一个很好的例子
多项式exp
多项式开方
下降幂多项式乘法
咕~~~~~
 
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号