Yangk's-计算几何

 码 计算几何模板

原博客在这

https://blog.csdn.net/clasky/article/details/9990235?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-2&utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-2

1.计算几何

1.1 注意

1. 注意舍入方式(0.5的舍入方向);防止输出-0.
2. 几何题注意多测试不对称数据.
3. 整数几何注意xmult和dmult是否会出界;
   符点几何注意eps的使用.
4. 避免使用斜率;注意除数是否会为0.
5. 公式一定要化简后再代入.
6. 判断同一个2*PI域内两角度差应该是
   abs(a1-a2)<beta||abs(a1-a2)>pi+pi-beta;
   相等应该是
   abs(a1-a2)<eps||abs(a1-a2)>pi+pi-eps;
7. 需要的话尽量使用atan2,注意:atan2(0,0)=0,
   atan2(1,0)=pi/2,atan2(-1,0)=-pi/2,atan2(0,1)=0,atan2(0,-1)=pi.
8. cross product = |u|*|v|*sin(a)
   dot product = |u|*|v|*cos(a)
9. (P1-P0)x(P2-P0)结果的意义:
   正: <P0,P1>在<P0,P2>顺时针(0,pi)内
   负: <P0,P1>在<P0,P2>逆时针(0,pi)内
   0 : <P0,P1>,<P0,P2>共线,夹角为0或pi
10. 误差限缺省使用1e-8!

1.2几何公式

三角形:
1. 半周长 P=(a+b+c)/2
2. 面积 S=aHa/2=absin(C)/2=sqrt(P(P-a)(P-b)(P-c))
3. 中线 Ma=sqrt(2(b^2+c^2)-a^2)/2=sqrt(b^2+c^2+2bccos(A))/2
4. 角平分线 Ta=sqrt(bc((b+c)^2-a^2))/(b+c)=2bccos(A/2)/(b+c)
5. 高线 Ha=bsin(C)=csin(B)=sqrt(b^2-((a^2+b^2-c^2)/(2a))^2)
6. 内切圆半径 r=S/P=asin(B/2)sin(C/2)/sin((B+C)/2)
               =4Rsin(A/2)sin(B/2)sin(C/2)=sqrt((P-a)(P-b)(P-c)/P)
               =Ptan(A/2)tan(B/2)tan(C/2)
7. 外接圆半径 R=abc/(4S)=a/(2sin(A))=b/(2sin(B))=c/(2sin(C))
 
 
四边形:
D1,D2为对角线,M对角线中点连线,A为对角线夹角
1. a^2+b^2+c^2+d^2=D1^2+D2^2+4M^2
2. S=D1D2sin(A)/2
(以下对圆的内接四边形)
3. ac+bd=D1D2
4. S=sqrt((P-a)(P-b)(P-c)(P-d)),P为半周长
 
 
正n边形:
R为外接圆半径,r为内切圆半径
1. 中心角 A=2PI/n
2. 内角 C=(n-2)PI/n
3. 边长 a=2sqrt(R^2-r^2)=2Rsin(A/2)=2rtan(A/2)
4. 面积 S=nar/2=nr^2tan(A/2)=nR^2sin(A)/2=na^2/(4tan(A/2))
 
 
圆:
1. 弧长 l=rA
2. 弦长 a=2sqrt(2hr-h^2)=2rsin(A/2)
3. 弓形高 h=r-sqrt(r^2-a^2/4)=r(1-cos(A/2))=atan(A/4)/2
4. 扇形面积 S1=rl/2=r^2A/2
5. 弓形面积 S2=(rl-a(r-h))/2=r^2(A-sin(A))/2
 
 
棱柱:
1. 体积 V=Ah,A为底面积,h为高
2. 侧面积 S=lp,l为棱长,p为直截面周长
3. 全面积 T=S+2A
 
 
棱锥:
1. 体积 V=Ah/3,A为底面积,h为高
(以下对正棱锥)
2. 侧面积 S=lp/2,l为斜高,p为底面周长
3. 全面积 T=S+A
 
 
棱台:
1. 体积 V=(A1+A2+sqrt(A1A2))h/3,A1.A2为上下底面积,h为高
(以下为正棱台)
2. 侧面积 S=(p1+p2)l/2,p1.p2为上下底面周长,l为斜高
3. 全面积 T=S+A1+A2
 
 
圆柱:
1. 侧面积 S=2PIrh
2. 全面积 T=2PIr(h+r)
3. 体积 V=PIr^2h
 
 
圆锥:
1. 母线 l=sqrt(h^2+r^2)
2. 侧面积 S=PIrl
3. 全面积 T=PIr(l+r)
4. 体积 V=PIr^2h/3
 
 
圆台:
1. 母线 l=sqrt(h^2+(r1-r2)^2)
2. 侧面积 S=PI(r1+r2)l
3. 全面积 T=PIr1(l+r1)+PIr2(l+r2)
4. 体积 V=PI(r1^2+r2^2+r1r2)h/3
 
 
球:
1. 全面积 T=4PIr^2
2. 体积 V=4PIr^3/3
 
 
球台:
1. 侧面积 S=2PIrh
2. 全面积 T=PI(2rh+r1^2+r2^2)
3. 体积 V=PIh(3(r1^2+r2^2)+h^2)/6
 
 
球扇形:
1. 全面积 T=PIr(2h+r0),h为球冠高,r0为球冠底面半径
2. 体积 V=2PIr^2h/3

 

1.3 多边形

#include <stdlib.h>
#include <math.h>
#define MAXN 1000
#define offset 10000
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
#define _sign(x) ((x)>eps?1:((x)<-eps?2:0))
struct point{double x,y;};
struct line{point a,b;};
 
 
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
 
 
//判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线
int is_convex(int n,point* p){
    int i,s[3]={1,1,1};
    for (i=0;i<n&&s[1]|s[2];i++)
        s[_sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0;
    return s[1]|s[2];
}
 
 
//判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线
int is_convex_v2(int n,point* p){
    int i,s[3]={1,1,1};
    for (i=0;i<n&&s[0]&&s[1]|s[2];i++)
        s[_sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0;
    return s[0]&&s[1]|s[2];
}
 
 
//判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出
int inside_convex(point q,int n,point* p){
    int i,s[3]={1,1,1};
    for (i=0;i<n&&s[1]|s[2];i++)
        s[_sign(xmult(p[(i+1)%n],q,p[i]))]=0;
    return s[1]|s[2];
}
 
 
//判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回0
int inside_convex_v2(point q,int n,point* p){
    int i,s[3]={1,1,1};
    for (i=0;i<n&&s[0]&&s[1]|s[2];i++)
        s[_sign(xmult(p[(i+1)%n],q,p[i]))]=0;
    return s[0]&&s[1]|s[2];
}
 
 
//判点在任意多边形内,顶点按顺时针或逆时针给出
//on_edge表示点在多边形边上时的返回值,offset为多边形坐标上限
int inside_polygon(point q,int n,point* p,int on_edge=1){
    point q2;
    int i=0,count;
    while (i<n)
        for (count=i=0,q2.x=rand()+offset,q2.y=rand()+offset;i<n;i++)
            if (zero(xmult(q,p[i],p[(i+1)%n]))&&(p[i].x-q.x)*(p[(i+1)%n].x-q.x)<eps&&(p[i].y-q.y)*(p[(i+1)%n].y-q.y)<eps)
                return on_edge;
            else if (zero(xmult(q,q2,p[i])))
                break;
            else if (xmult(q,p[i],q2)*xmult(q,p[(i+1)%n],q2)<-eps&&xmult(p[i],q,p[(i+1)%n])*xmult(p[i],q2,p[(i+1)%n])<-eps)
                count++;
    return count&1;
}
 
 
inline int opposite_side(point p1,point p2,point l1,point l2){
    return xmult(l1,p1,l2)*xmult(l1,p2,l2)<-eps;
}
 
 
inline int dot_online_in(point p,point l1,point l2){
    return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
}
 
 
//判线段在任意多边形内,顶点按顺时针或逆时针给出,与边界相交返回1
int inside_polygon(point l1,point l2,int n,point* p){
    point t[MAXN],tt;
    int i,j,k=0;
    if (!inside_polygon(l1,n,p)||!inside_polygon(l2,n,p))
        return 0;
    for (i=0;i<n;i++)
        if (opposite_side(l1,l2,p[i],p[(i+1)%n])&&opposite_side(p[i],p[(i+1)%n],l1,l2))
            return 0;
        else if (dot_online_in(l1,p[i],p[(i+1)%n]))
            t[k++]=l1;
        else if (dot_online_in(l2,p[i],p[(i+1)%n]))
            t[k++]=l2;
        else if (dot_online_in(p[i],l1,l2))
            t[k++]=p[i];
    for (i=0;i<k;i++)
        for (j=i+1;j<k;j++){
            tt.x=(t[i].x+t[j].x)/2;
            tt.y=(t[i].y+t[j].y)/2;
            if (!inside_polygon(tt,n,p))
                return 0;            
        }
    return 1;
}
 
 
point intersection(line u,line v){
    point ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
            /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    return ret;
}
 
 
point barycenter(point a,point b,point c){
    line u,v;
    u.a.x=(a.x+b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b=c;
    v.a.x=(a.x+c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b=b;
    return intersection(u,v);
}
 
 
//多边形重心
point barycenter(int n,point* p){
    point ret,t;
    double t1=0,t2;
    int i;
    ret.x=ret.y=0;
    for (i=1;i<n-1;i++)
        if (fabs(t2=xmult(p[0],p[i],p[i+1]))>eps){
            t=barycenter(p[0],p[i],p[i+1]);
            ret.x+=t.x*t2;
            ret.y+=t.y*t2;
            t1+=t2;
        }
    if (fabs(t1)>eps)
        ret.x/=t1,ret.y/=t1;
    return ret;
}

 

1.4多边形切割

 

//多边形切割
//可用于半平面交
#define MAXN 100
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
 
 
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
 
 
int same_side(point p1,point p2,point l1,point l2){
    return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;
}
 
 
point intersection(point u1,point u2,point v1,point v2){
    point ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x+=(u2.x-u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    return ret;
}
 
 
//将多边形沿l1,l2确定的直线切割在side侧切割,保证l1,l2,side不共线
void polygon_cut(int& n,point* p,point l1,point l2,point side){
    point pp[MAXN];
    int m=0,i;
    for (i=0;i<n;i++){
        if (same_side(p[i],side,l1,l2))
            pp[m++]=p[i];
        if (!same_side(p[i],p[(i+1)%n],l1,l2)&&!(zero(xmult(p[i],l1,l2))&&zero(xmult(p[(i+1)%n],l1,l2))))
            pp[m++]=intersection(p[i],p[(i+1)%n],l1,l2);
    }
    for (n=i=0;i<m;i++)
        if (!i||!zero(pp[i].x-pp[i-1].x)||!zero(pp[i].y-pp[i-1].y))
            p[n++]=pp[i];
    if (zero(p[n-1].x-p[0].x)&&zero(p[n-1].y-p[0].y))
        n--;
    if (n<3)
        n=0;
}

1.5 浮点函数

//浮点几何函数库
#include <math.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
struct line{point a,b;};
 
 
//计算cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double xmult(double x1,double y1,double x2,double y2,double x0,double y0){
    return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
}
 
 
//计算dot product (P1-P0).(P2-P0)
double dmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
}
double dmult(double x1,double y1,double x2,double y2,double x0,double y0){
    return (x1-x0)*(x2-x0)+(y1-y0)*(y2-y0);
}
 
 
//两点距离
double distance(point p1,point p2){
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
double distance(double x1,double y1,double x2,double y2){
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
 
 
//判三点共线
int dots_inline(point p1,point p2,point p3){
    return zero(xmult(p1,p2,p3));
}
int dots_inline(double x1,double y1,double x2,double y2,double x3,double y3){
    return zero(xmult(x1,y1,x2,y2,x3,y3));
}
 
 
//判点是否在线段上,包括端点
int dot_online_in(point p,line l){
    return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps;
}
int dot_online_in(point p,point l1,point l2){
    return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
}
int dot_online_in(double x,double y,double x1,double y1,double x2,double y2){
    return zero(xmult(x,y,x1,y1,x2,y2))&&(x1-x)*(x2-x)<eps&&(y1-y)*(y2-y)<eps;
}
 
 
//判点是否在线段上,不包括端点
int dot_online_ex(point p,line l){
    return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y));
}
int dot_online_ex(point p,point l1,point l2){
    return dot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y))&&(!zero(p.x-l2.x)||!zero(p.y-l2.y));
}
int dot_online_ex(double x,double y,double x1,double y1,double x2,double y2){
    return dot_online_in(x,y,x1,y1,x2,y2)&&(!zero(x-x1)||!zero(y-y1))&&(!zero(x-x2)||!zero(y-y2));
}
 
 
//判两点在线段同侧,点在线段上返回0
int same_side(point p1,point p2,line l){
    return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps;
}
int same_side(point p1,point p2,point l1,point l2){
    return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;
}
 
 
//判两点在线段异侧,点在线段上返回0
int opposite_side(point p1,point p2,line l){
    return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps;
}
int opposite_side(point p1,point p2,point l1,point l2){
    return xmult(l1,p1,l2)*xmult(l1,p2,l2)<-eps;
}
 
 
//判两直线平行
int parallel(line u,line v){
    return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));
}
int parallel(point u1,point u2,point v1,point v2){
    return zero((u1.x-u2.x)*(v1.y-v2.y)-(v1.x-v2.x)*(u1.y-u2.y));
}
 
 
//判两直线垂直
int perpendicular(line u,line v){
    return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y));
}
int perpendicular(point u1,point u2,point v1,point v2){
    return zero((u1.x-u2.x)*(v1.x-v2.x)+(u1.y-u2.y)*(v1.y-v2.y));
}
 
 
//判两线段相交,包括端点和部分重合
int intersect_in(line u,line v){
    if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
        return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
    return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
}
int intersect_in(point u1,point u2,point v1,point v2){
    if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
        return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
    return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
}
 
 
//判两线段相交,不包括端点和部分重合
int intersect_ex(line u,line v){
    return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
}
int intersect_ex(point u1,point u2,point v1,point v2){
    return opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);
}
 
 
//计算两直线交点,注意事先判断直线是否平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point intersection(line u,line v){
    point ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
            /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    return ret;
}
point intersection(point u1,point u2,point v1,point v2){
    point ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x+=(u2.x-u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    return ret;
}
 
 
//点到直线上的最近点
point ptoline(point p,line l){
    point t=p;
    t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
    return intersection(p,t,l.a,l.b);
}
point ptoline(point p,point l1,point l2){
    point t=p;
    t.x+=l1.y-l2.y,t.y+=l2.x-l1.x;
    return intersection(p,t,l1,l2);
}
 
 
//点到直线距离
double disptoline(point p,line l){
    return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
}
double disptoline(point p,point l1,point l2){
    return fabs(xmult(p,l1,l2))/distance(l1,l2);
}
double disptoline(double x,double y,double x1,double y1,double x2,double y2){
    return fabs(xmult(x,y,x1,y1,x2,y2))/distance(x1,y1,x2,y2);
}
 
 
//点到线段上的最近点
point ptoseg(point p,line l){
    point t=p;
    t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
    if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
        return distance(p,l.a)<distance(p,l.b)?l.a:l.b;
    return intersection(p,t,l.a,l.b);
}
point ptoseg(point p,point l1,point l2){
    point t=p;
    t.x+=l1.y-l2.y,t.y+=l2.x-l1.x;
    if (xmult(l1,t,p)*xmult(l2,t,p)>eps)
        return distance(p,l1)<distance(p,l2)?l1:l2;
    return intersection(p,t,l1,l2);
}
 
 
//点到线段距离
double disptoseg(point p,line l){
    point t=p;
    t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
    if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
        return distance(p,l.a)<distance(p,l.b)?distance(p,l.a):distance(p,l.b);
    return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
}
double disptoseg(point p,point l1,point l2){
    point t=p;
    t.x+=l1.y-l2.y,t.y+=l2.x-l1.x;
    if (xmult(l1,t,p)*xmult(l2,t,p)>eps)
        return distance(p,l1)<distance(p,l2)?distance(p,l1):distance(p,l2);
    return fabs(xmult(p,l1,l2))/distance(l1,l2);
}
 
 
//矢量V以P为顶点逆时针旋转angle并放大scale倍
point rotate(point v,point p,double angle,double scale){
    point ret=p;
    v.x-=p.x,v.y-=p.y;
    p.x=scale*cos(angle);
    p.y=scale*sin(angle);
    ret.x+=v.x*p.x-v.y*p.y;
    ret.y+=v.x*p.y+v.y*p.x;
    return ret;
}
 
 
//p点关于直线L的对称点
ponit symmetricalPointofLine(point p, line L)
{
    point p2;
    double d;
    d = L.a * L.a + L.b * L.b;
    p2.x = (L.b * L.b * p.x - L.a * L.a * p.x - 
            2 * L.a * L.b * p.y - 2 * L.a * L.c) / d;
    p2.y = (L.a * L.a * p.y - L.b * L.b * p.y - 
            2 * L.a * L.b * p.x - 2 * L.b * L.c) / d;
    return p2;
}
 
 
//求两点的平分线
line bisector(point& a, point& b) {
    line ab, ans;  ab.set(a, b);
    double midx = (a.x + b.x)/2.0,    midy = (a.y + b.y)/2.0;
    ans.a = -ab.b, ans.b = -ab.a, ans.c = -ab.b * midx + ab.a * midy;
    return ans;
}
 
 
// 已知入射线、镜面,求反射线。 
// a1,b1,c1为镜面直线方程(a1 x + b1 y + c1 = 0 ,下同)系数;  
a2,b2,c2为入射光直线方程系数;  
a,b,c为反射光直线方程系数. 
// 光是有方向的,使用时注意:入射光向量:<-b2,a2>;反射光向量:<b,-a>. 
// 不要忘记结果中可能会有"negative zeros" 
 
 
void reflect(double a1,double b1,double c1,
double a2,double b2,double c2,
double &a,double &b,double &c) 
{ 
    double n,m; 
    double tpb,tpa; 
    tpb=b1*b2+a1*a2; 
    tpa=a2*b1-a1*b2; 
    m=(tpb*b1+tpa*a1)/(b1*b1+a1*a1); 
    n=(tpa*b1-tpb*a1)/(b1*b1+a1*a1); 
    if(fabs(a1*b2-a2*b1)<1e-20) 
    { 
        a=a2;b=b2;c=c2; 
        return; 
    } 
    double xx,yy; //(xx,yy)是入射线与镜面的交点。 
    xx=(b1*c2-b2*c1)/(a1*b2-a2*b1); 
    yy=(a2*c1-a1*c2)/(a1*b2-a2*b1); 
    a=n; 
    b=-m; 
    c=m*yy-xx*n; 
}

1.6 面积

#include <math.h>
struct point{double x,y;};
 
 
//计算cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double xmult(double x1,double y1,double x2,double y2,double x0,double y0){
    return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
}
 
 
//计算三角形面积,输入三顶点
double area_triangle(point p1,point p2,point p3){
    return fabs(xmult(p1,p2,p3))/2;
}
double area_triangle(double x1,double y1,double x2,double y2,double x3,double y3){
    return fabs(xmult(x1,y1,x2,y2,x3,y3))/2;
}
 
 
//计算三角形面积,输入三边长
double area_triangle(double a,double b,double c){
    double s=(a+b+c)/2;
    return sqrt(s*(s-a)*(s-b)*(s-c));
}
 
 
//计算多边形面积,顶点按顺时针或逆时针给出
double area_polygon(int n,point* p){
    double s1=0,s2=0;
    int i;
    for (i=0;i<n;i++)
        s1+=p[(i+1)%n].y*p[i].x,s2+=p[(i+1)%n].y*p[(i+2)%n].x;
    return fabs(s1-s2)/2;
}

 

1.7球面

#include <math.h>
const double pi=acos(-1);
 
 
//计算圆心角lat表示纬度,-90<=w<=90,lng表示经度
//返回两点所在大圆劣弧对应圆心角,0<=angle<=pi
double angle(double lng1,double lat1,double lng2,double lat2){
    double dlng=fabs(lng1-lng2)*pi/180;
    while (dlng>=pi+pi)
        dlng-=pi+pi;
    if (dlng>pi)
        dlng=pi+pi-dlng;
    lat1*=pi/180,lat2*=pi/180;
    return acos(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2));
}
 
 
//计算距离,r为球半径
double line_dist(double r,double lng1,double lat1,double lng2,double lat2){
    double dlng=fabs(lng1-lng2)*pi/180;
    while (dlng>=pi+pi)
        dlng-=pi+pi;
    if (dlng>pi)
        dlng=pi+pi-dlng;
    lat1*=pi/180,lat2*=pi/180;
    return r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2)));
}
 
 
//计算球面距离,r为球半径
inline double sphere_dist(double r,double lng1,double lat1,double lng2,double lat2){
    return r*angle(lng1,lat1,lng2,lat2);
}
 

1.8三角形

#include <math.h>
struct point{double x,y;};
struct line{point a,b;};
 
 
double distance(point p1,point p2){
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
 
 
point intersection(line u,line v){
    point ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
            /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    return ret;
}
 
 
//外心
point circumcenter(point a,point b,point c){
    line u,v;
    u.a.x=(a.x+b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b.x=u.a.x-a.y+b.y;
    u.b.y=u.a.y+a.x-b.x;
    v.a.x=(a.x+c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b.x=v.a.x-a.y+c.y;
    v.b.y=v.a.y+a.x-c.x;
    return intersection(u,v);
}
 
 
//内心
point incenter(point a,point b,point c){
    line u,v;
    double m,n;
    u.a=a;
    m=atan2(b.y-a.y,b.x-a.x);
    n=atan2(c.y-a.y,c.x-a.x);
    u.b.x=u.a.x+cos((m+n)/2);
    u.b.y=u.a.y+sin((m+n)/2);
    v.a=b;
    m=atan2(a.y-b.y,a.x-b.x);
    n=atan2(c.y-b.y,c.x-b.x);
    v.b.x=v.a.x+cos((m+n)/2);
    v.b.y=v.a.y+sin((m+n)/2);
    return intersection(u,v);
}
 
 
//垂心
point perpencenter(point a,point b,point c){
    line u,v;
    u.a=c;
    u.b.x=u.a.x-a.y+b.y;
    u.b.y=u.a.y+a.x-b.x;
    v.a=b;
    v.b.x=v.a.x-a.y+c.y;
    v.b.y=v.a.y+a.x-c.x;
    return intersection(u,v);
}
 
 
//重心
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
point barycenter(point a,point b,point c){
    line u,v;
    u.a.x=(a.x+b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b=c;
    v.a.x=(a.x+c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b=b;
    return intersection(u,v);
}
 
 
//费马点
//到三角形三顶点距离之和最小的点
point fermentpoint(point a,point b,point c){
    point u,v;
    double step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+fabs(c.x)+fabs(c.y);
    int i,j,k;
    u.x=(a.x+b.x+c.x)/3;
    u.y=(a.y+b.y+c.y)/3;
    while (step>1e-10)
        for (k=0;k<10;step/=2,k++)
            for (i=-1;i<=1;i++)
                for (j=-1;j<=1;j++){
                    v.x=u.x+step*i;
                    v.y=u.y+step*j;
                    if (distance(u,a)+distance(u,b)+distance(u,c)>distance(v,a)+distance(v,b)+distance(v,c))
                        u=v;
                }
    return u;
}
 
 
//求曲率半径 三角形内最大可围成面积
#include<iostream>
 #include<cmath>
 using namespace std;
 const double pi=3.14159265358979;
 int main()
 {
    double a,b,c,d,p,s,r,ans,R,x,l; int T=0;
    while(cin>>a>>b>>c>>d&&a+b+c+d)
     {
        T++;
        l=a+b+c;
        p=l/2;
        s=sqrt(p*(p-a)*(p-b)*(p-c));
        R= s /p;
        if (d >= l)  ans = s;
        else if(2*pi*R>=d) ans=d*d/(4*pi);
        else
        {
            r = (l-d)/((l/R)-(2*pi));
            x = r*r*s/(R*R);
            ans = s - x + pi * r * r;  
        }
        printf("Case %d: %.2lf\n",T,ans);
     }
     return 0;
 }

 

1.9三维几何

//三维几何函数库
#include <math.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point3{double x,y,z;};
struct line3{point3 a,b;};
struct plane3{point3 a,b,c;};
 
 
//计算cross product U x V
point3 xmult(point3 u,point3 v){
    point3 ret;
    ret.x=u.y*v.z-v.y*u.z;
    ret.y=u.z*v.x-u.x*v.z;
    ret.z=u.x*v.y-u.y*v.x;
    return ret;
}
 
 
//计算dot product U . V
double dmult(point3 u,point3 v){
    return u.x*v.x+u.y*v.y+u.z*v.z;
}
 
 
//矢量差 U - V
point3 subt(point3 u,point3 v){
    point3 ret;
    ret.x=u.x-v.x;
    ret.y=u.y-v.y;
    ret.z=u.z-v.z;
    return ret;
}
 
 
//取平面法向量
point3 pvec(plane3 s){
    return xmult(subt(s.a,s.b),subt(s.b,s.c));
}
point3 pvec(point3 s1,point3 s2,point3 s3){
    return xmult(subt(s1,s2),subt(s2,s3));
}
 
 
//两点距离,单参数取向量大小
double distance(point3 p1,point3 p2){
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
}
 
 
//向量大小
double vlen(point3 p){
    return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
}
 
 
//判三点共线
int dots_inline(point3 p1,point3 p2,point3 p3){
    return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps;
}
 
 
//判四点共面
int dots_onplane(point3 a,point3 b,point3 c,point3 d){
    return zero(dmult(pvec(a,b,c),subt(d,a)));
}
 
 
//判点是否在线段上,包括端点和共线
int dot_online_in(point3 p,line3 l){
    return zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&
        (l.a.y-p.y)*(l.b.y-p.y)<eps&&(l.a.z-p.z)*(l.b.z-p.z)<eps;
}
int dot_online_in(point3 p,point3 l1,point3 l2){
    return zero(vlen(xmult(subt(p,l1),subt(p,l2))))&&(l1.x-p.x)*(l2.x-p.x)<eps&&
        (l1.y-p.y)*(l2.y-p.y)<eps&&(l1.z-p.z)*(l2.z-p.z)<eps;
}
 
 
//判点是否在线段上,不包括端点
int dot_online_ex(point3 p,line3 l){
    return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&&
        (!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z));
}
int dot_online_ex(point3 p,point3 l1,point3 l2){
    return dot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y)||!zero(p.z-l1.z))&&
        (!zero(p.x-l2.x)||!zero(p.y-l2.y)||!zero(p.z-l2.z));
}
 
 
//判点是否在空间三角形上,包括边界,三点共线无意义
int dot_inplane_in(point3 p,plane3 s){
    return zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))-
        vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a))));
}
int dot_inplane_in(point3 p,point3 s1,point3 s2,point3 s3){
    return zero(vlen(xmult(subt(s1,s2),subt(s1,s3)))-vlen(xmult(subt(p,s1),subt(p,s2)))-
        vlen(xmult(subt(p,s2),subt(p,s3)))-vlen(xmult(subt(p,s3),subt(p,s1))));
}
 
 
//判点是否在空间三角形上,不包括边界,三点共线无意义
int dot_inplane_ex(point3 p,plane3 s){
    return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&&
        vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>eps;
}
int dot_inplane_ex(point3 p,point3 s1,point3 s2,point3 s3){
    return dot_inplane_in(p,s1,s2,s3)&&vlen(xmult(subt(p,s1),subt(p,s2)))>eps&&
        vlen(xmult(subt(p,s2),subt(p,s3)))>eps&&vlen(xmult(subt(p,s3),subt(p,s1)))>eps;
}
 
 
//判两点在线段同侧,点在线段上返回0,不共面无意义
int same_side(point3 p1,point3 p2,line3 l){
    return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps;
}
int same_side(point3 p1,point3 p2,point3 l1,point3 l2){
    return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))>eps;
}
 
 
//判两点在线段异侧,点在线段上返回0,不共面无意义
int opposite_side(point3 p1,point3 p2,line3 l){
    return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))<-eps;
}
int opposite_side(point3 p1,point3 p2,point3 l1,point3 l2){
    return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))<-eps;
}
 
 
//判两点在平面同侧,点在平面上返回0
int same_side(point3 p1,point3 p2,plane3 s){
    return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps;
}
int same_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
    return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps;
}
 
 
//判两点在平面异侧,点在平面上返回0
int opposite_side(point3 p1,point3 p2,plane3 s){
    return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps;
}
int opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
    return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps;
}
 
 
//判两直线平行
int parallel(line3 u,line3 v){
    return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps;
}
int parallel(point3 u1,point3 u2,point3 v1,point3 v2){
    return vlen(xmult(subt(u1,u2),subt(v1,v2)))<eps;
}
 
 
//判两平面平行
int parallel(plane3 u,plane3 v){
    return vlen(xmult(pvec(u),pvec(v)))<eps;
}
int parallel(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return vlen(xmult(pvec(u1,u2,u3),pvec(v1,v2,v3)))<eps;
}
 
 
//判直线与平面平行
int parallel(line3 l,plane3 s){
    return zero(dmult(subt(l.a,l.b),pvec(s)));
}
int parallel(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return zero(dmult(subt(l1,l2),pvec(s1,s2,s3)));
}
 
 
//判两直线垂直
int perpendicular(line3 u,line3 v){
    return zero(dmult(subt(u.a,u.b),subt(v.a,v.b)));
}
int perpendicular(point3 u1,point3 u2,point3 v1,point3 v2){
    return zero(dmult(subt(u1,u2),subt(v1,v2)));
}
 
 
//判两平面垂直
int perpendicular(plane3 u,plane3 v){
    return zero(dmult(pvec(u),pvec(v)));
}
int perpendicular(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return zero(dmult(pvec(u1,u2,u3),pvec(v1,v2,v3)));
}
 
 
//判直线与平面平行
int perpendicular(line3 l,plane3 s){
    return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps;
}
int perpendicular(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return vlen(xmult(subt(l1,l2),pvec(s1,s2,s3)))<eps;
}
 
 
//判两线段相交,包括端点和部分重合
int intersect_in(line3 u,line3 v){
    if (!dots_onplane(u.a,u.b,v.a,v.b))
        return 0;
    if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
        return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
    return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
}
int intersect_in(point3 u1,point3 u2,point3 v1,point3 v2){
    if (!dots_onplane(u1,u2,v1,v2))
        return 0;
    if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
        return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
    return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2);
}
 
 
//判两线段相交,不包括端点和部分重合
int intersect_ex(line3 u,line3 v){
    return dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
}
int intersect_ex(point3 u1,point3 u2,point3 v1,point3 v2){
    return dots_onplane(u1,u2,v1,v2)&&opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);
}
 
 
//判线段与空间三角形相交,包括交于边界和(部分)包含
int intersect_in(line3 l,plane3 s){
    return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&&
        !same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b);
}
int intersect_in(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return !same_side(l1,l2,s1,s2,s3)&&!same_side(s1,s2,l1,l2,s3)&&
        !same_side(s2,s3,l1,l2,s1)&&!same_side(s3,s1,l1,l2,s2);
}
 
 
//判线段与空间三角形相交,不包括交于边界和(部分)包含
int intersect_ex(line3 l,plane3 s){
    return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&&
        opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b);
}
int intersect_ex(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return opposite_side(l1,l2,s1,s2,s3)&&opposite_side(s1,s2,l1,l2,s3)&&
        opposite_side(s2,s3,l1,l2,s1)&&opposite_side(s3,s1,l1,l2,s2);
}
 
 
//计算两直线交点,注意事先判断直线是否共面和平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point3 intersection(line3 u,line3 v){
    point3 ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
            /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    ret.z+=(u.b.z-u.a.z)*t;
    return ret;
}
point3 intersection(point3 u1,point3 u2,point3 v1,point3 v2){
    point3 ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x+=(u2.x-u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    ret.z+=(u2.z-u1.z)*t;
    return ret;
}
 
 
//计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
//线段和空间三角形交点请另外判断
point3 intersection(line3 l,plane3 s){
    point3 ret=pvec(s);
    double t=(ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))/
        (ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z));
    ret.x=l.a.x+(l.b.x-l.a.x)*t;
    ret.y=l.a.y+(l.b.y-l.a.y)*t;
    ret.z=l.a.z+(l.b.z-l.a.z)*t;
    return ret;
}
point3 intersection(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    point3 ret=pvec(s1,s2,s3);
    double t=(ret.x*(s1.x-l1.x)+ret.y*(s1.y-l1.y)+ret.z*(s1.z-l1.z))/
        (ret.x*(l2.x-l1.x)+ret.y*(l2.y-l1.y)+ret.z*(l2.z-l1.z));
    ret.x=l1.x+(l2.x-l1.x)*t;
    ret.y=l1.y+(l2.y-l1.y)*t;
    ret.z=l1.z+(l2.z-l1.z)*t;
    return ret;
}
 
 
//计算两平面交线,注意事先判断是否平行,并保证三点不共线!
line3 intersection(plane3 u,plane3 v){
    line3 ret;
    ret.a=parallel(v.a,v.b,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.a,v.b,u.a,u.b,u.c);
    ret.b=parallel(v.c,v.a,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.c,v.a,u.a,u.b,u.c);
    return ret;
}
line3 intersection(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    line3 ret;
    ret.a=parallel(v1,v2,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v1,v2,u1,u2,u3);
    ret.b=parallel(v3,v1,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v3,v1,u1,u2,u3);
    return ret;
}
 
 
//点到直线距离
double ptoline(point3 p,line3 l){
    return vlen(xmult(subt(p,l.a),subt(l.b,l.a)))/distance(l.a,l.b);
}
double ptoline(point3 p,point3 l1,point3 l2){
    return vlen(xmult(subt(p,l1),subt(l2,l1)))/distance(l1,l2);
}
 
 
//点到平面距离
double ptoplane(point3 p,plane3 s){
    return fabs(dmult(pvec(s),subt(p,s.a)))/vlen(pvec(s));
}
double ptoplane(point3 p,point3 s1,point3 s2,point3 s3){
    return fabs(dmult(pvec(s1,s2,s3),subt(p,s1)))/vlen(pvec(s1,s2,s3));
}
 
 
//直线到直线距离
double linetoline(line3 u,line3 v){
    point3 n=xmult(subt(u.a,u.b),subt(v.a,v.b));
    return fabs(dmult(subt(u.a,v.a),n))/vlen(n);
}
double linetoline(point3 u1,point3 u2,point3 v1,point3 v2){
    point3 n=xmult(subt(u1,u2),subt(v1,v2));
    return fabs(dmult(subt(u1,v1),n))/vlen(n);
}
 
 
//两直线夹角cos值
double angle_cos(line3 u,line3 v){
    return dmult(subt(u.a,u.b),subt(v.a,v.b))/vlen(subt(u.a,u.b))/vlen(subt(v.a,v.b));
}
double angle_cos(point3 u1,point3 u2,point3 v1,point3 v2){
    return dmult(subt(u1,u2),subt(v1,v2))/vlen(subt(u1,u2))/vlen(subt(v1,v2));
}
 
 
//两平面夹角cos值
double angle_cos(plane3 u,plane3 v){
    return dmult(pvec(u),pvec(v))/vlen(pvec(u))/vlen(pvec(v));
}
double angle_cos(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return dmult(pvec(u1,u2,u3),pvec(v1,v2,v3))/vlen(pvec(u1,u2,u3))/vlen(pvec(v1,v2,v3));
}
 
 
//直线平面夹角sin值
double angle_sin(line3 l,plane3 s){
    return dmult(subt(l.a,l.b),pvec(s))/vlen(subt(l.a,l.b))/vlen(pvec(s));
}
double angle_sin(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){
    return dmult(subt(l1,l2),pvec(s1,s2,s3))/vlen(subt(l1,l2))/vlen(pvec(s1,s2,s3));
}

 

1.10 凸包

//水平序
#define maxn 100005
 
 
struct point
{double x,y;}p[maxn],s[maxn];
bool operator < (point a,point b)
{return a.x<b.x || a.x==b.x&&a.y<b.y;}
 
 
int n,f;
 
 
double cp(point a,point b,point c)
{return (c.y-a.y)*(b.x-a.x)-(b.y-a.y)*(c.x-a.x);}
 
 
void Convex(point *p,int &n)
{
    sort(p,p+n);
    int i,j,r,top,m;
    s[0] = p[0];s[1] = p[1];top = 1;
    for(i=2;i<n;i++)
    {
        while( top>0 && cp(p[i],s[top],s[top-1])>=0 ) top--;
        top++;s[top] = p[i];
    }
    m = top;
    top++;s[top] = p[n-2];
    for(i=n-3;i>=0;i--)
    {
        while( top>m && cp(p[i],s[top],s[top-1])>=0 ) top--;
        top++;s[top] = p[i];
    }
    top--;
    n = top+1;
}
 
 
极角序
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
#define maxn 100005
int N;
struct A
{
    int x,y;
    int v,l;
}P[maxn];
int xmult(int x1,int y1,int x2,int y2,int x3,int y3)
{
    return (y2-y1)*(x3-x1)-(y3-y1)*(x2-x1);
}
void swap(A &a,A &b)
{
    A t = a;a = b,b = t;
}
bool operator < (A a,A b)
{
    int k = xmult(P[0].x,P[0].y,a.x,a.y,b.x,b.y);
    if( k<0 )
        return 1;
    else if( k==0 )
    {
        if( abs(P[0].x-a.x)<abs(P[0].x-b.x) )
            return 1;
        if( abs(P[0].y-a.y)<abs(P[0].y-b.y) )
            return 1;
    }
    return 0;
}
void Grem_scan(int n)
{
    int i,j,k,l;
    k = 0x7fffffff;
    for(i=0;i<n;i++)
        if( P[i].x<k || P[i].x==k && P[i].y<P[l].y )
        k = P[i].x,l = i;
    swap(P[l],P[0]);
    sort(P+1,P+n);
    
    l = 3;
    for(i=3;i<n;i++)
    {
        while( xmult(P[l-2].x,P[l-2].y,P[l-1].x,P[l-1].y,P[i].x,P[i].y)>0 )
            l--;
        P[l++] = P[i];
    }
}
main()
{
    int i,j,k,l;
    N = 0;
    while( scanf("%d%d",&P[N].x,&P[N].y)!=EOF )
        N++;
    Grem_scan(N);
    for(i=0;i<N;i++)
        if( P[i].x==0 && P[i].y==0 )
        break;
    k = i++;
    printf("(0,0)\n");
    while( i!=k )
        printf("(%d,%d)\n",P[i].x,P[i].y),i = (i+1)%N;
}
 
 
//卷包裹法
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define maxn 55
struct A
{
    int x,y;
}P[maxn];
int T,N;
bool B[maxn];
int as[maxn],L;
int xmult(A a,A b,A c)
{
    return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
int main()
{
    int i,j,k,l;
    scanf("%d",&T);
    while( T-- )
    {
        scanf("%d",&N);
        k = 0x7ffffff;
        for(i=0;i<N;i++)
        {
            scanf("%d%d%d",&j,&P[i].x,&P[i].y);
            if( P[i].y<k )
                k = P[i].y,l = i;
        }
        memset(B,0,sizeof(B));
        B[l] = 1;
        as[0] = l;
        L = 1;
        while( 1 )
        {
            A a,b;
            if( L==1 )
                a.x = 0,a.y = P[as[0]].y;
            else
                a = P[as[L-2]];
            b = P[as[L-1]];
 
 
            k = -1;
            for(i=0;i<N;i++)
            {
                if( B[i] )
                    continue;
                if( xmult(a,b,P[i])<0 )
                    continue;
                if( k==-1 || xmult(P[as[L-1]],P[k],P[i])<0 || xmult(P[as[L-1]],P[k],P[i])==0 && P[i].y<P[k].y )
                    k = i;
            }
            if( k==-1 )
                break;
            B[k] = 1;
            as[L++] = k;
        }
        printf("%d ",L);
        for(i=0;i<L;i++)
            printf("%d ",as[i]+1);
        printf("\n");
    }
}

 

1.11 网格

#define abs(x) ((x)>0?(x):-(x))
struct point{int x,y;};
 
 
int gcd(int a,int b){return b?gcd(b,a%b):a;}
 
 
//多边形上的网格点个数
int grid_onedge(int n,point* p){
    int i,ret=0;
    for (i=0;i<n;i++)
        ret+=gcd(abs(p[i].x-p[(i+1)%n].x),abs(p[i].y-p[(i+1)%n].y));
    return ret;
}
 
 
//多边形内的网格点个数
int grid_inside(int n,point* p){
    int i,ret=0;
    for (i=0;i<n;i++)
        ret+=p[(i+1)%n].y*(p[i].x-p[(i+2)%n].x);
    return (abs(ret)-grid_onedge(n,p))/2+1;
}

1.12 圆

#include <math.h>
#define eps 1e-8
struct point{double x,y;};
 
 
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
 
 
double distance(point p1,point p2){
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
 
 
double disptoline(point p,point l1,point l2){
    return fabs(xmult(p,l1,l2))/distance(l1,l2);
}
 
 
point intersection(point u1,point u2,point v1,point v2){
    point ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x+=(u2.x-u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    return ret;
}
 
 
//判直线和圆相交,包括相切
int intersect_line_circle(point c,double r,point l1,point l2){
    return disptoline(c,l1,l2)<r+eps;
}
 
 
//判线段和圆相交,包括端点和相切
int intersect_seg_circle(point c,double r,point l1,point l2){
    double t1=distance(c,l1)-r,t2=distance(c,l2)-r;
    point t=c;
    if (t1<eps||t2<eps)
        return t1>-eps||t2>-eps;
    t.x+=l1.y-l2.y;
    t.y+=l2.x-l1.x;
    return xmult(l1,c,t)*xmult(l2,c,t)<eps&&disptoline(c,l1,l2)-r<eps;
}
 
 
//判圆和圆相交,包括相切
int intersect_circle_circle(point c1,double r1,point c2,double r2){
    return distance(c1,c2)<r1+r2+eps&&distance(c1,c2)>fabs(r1-r2)-eps;
}
 
 
//计算圆上到点p最近点,如p与圆心重合,返回p本身
point dot_to_circle(point c,double r,point p){
    point u,v;
    if (distance(p,c)<eps)
        return p;
    u.x=c.x+r*fabs(c.x-p.x)/distance(c,p);
    u.y=c.y+r*fabs(c.y-p.y)/distance(c,p)*((c.x-p.x)*(c.y-p.y)<0?-1:1);
    v.x=c.x-r*fabs(c.x-p.x)/distance(c,p);
    v.y=c.y-r*fabs(c.y-p.y)/distance(c,p)*((c.x-p.x)*(c.y-p.y)<0?-1:1);
    return distance(u,p)<distance(v,p)?u:v;
}
 
 
//计算直线与圆的交点,保证直线与圆有交点
//计算线段与圆的交点可用这个函数后判点是否在线段上
void intersection_line_circle(point c,double r,point l1,point l2,point& p1,point& p2){
    point p=c;
    double t;
    p.x+=l1.y-l2.y;
    p.y+=l2.x-l1.x;
    p=intersection(p,c,l1,l2);
    t=sqrt(r*r-distance(p,c)*distance(p,c))/distance(l1,l2);
    p1.x=p.x+(l2.x-l1.x)*t;
    p1.y=p.y+(l2.y-l1.y)*t;
    p2.x=p.x-(l2.x-l1.x)*t;
    p2.y=p.y-(l2.y-l1.y)*t;
}
 
 
//计算圆与圆的交点,保证圆与圆有交点,圆心不重合
void intersection_circle_circle(point c1,double r1,point c2,double r2,point& p1,point& p2){
    point u,v;
    double t;
    t=(1+(r1*r1-r2*r2)/distance(c1,c2)/distance(c1,c2))/2;
    u.x=c1.x+(c2.x-c1.x)*t;
    u.y=c1.y+(c2.y-c1.y)*t;
    v.x=u.x+c1.y-c2.y;
    v.y=u.y-c1.x+c2.x;
    intersection_line_circle(c1,r1,u,v,p1,p2);
}
 
 
//将向量p逆时针旋转angle角度
Point Rotate(Point p,double angle) {
    Point res;
    res.x=p.x*cos(angle)-p.y*sin(angle);
    res.y=p.x*sin(angle)+p.y*cos(angle);
    return res;
}
//求圆外一点对圆(o,r)的两个切点result1和result2
void TangentPoint_PC(Point poi,Point o,double r,Point &result1,Point &result2) {
    double line=sqrt((poi.x-o.x)*(poi.x-o.x)+(poi.y-o.y)*(poi.y-o.y));
    double angle=acos(r/line);
    Point unitvector,lin;
    lin.x=poi.x-o.x;
    lin.y=poi.y-o.y;
    unitvector.x=lin.x/sqrt(lin.x*lin.x+lin.y*lin.y)*r;
    unitvector.y=lin.y/sqrt(lin.x*lin.x+lin.y*lin.y)*r;
    result1=Rotate(unitvector,-angle);
    result2=Rotate(unitvector,angle);
    result1.x+=o.x;
    result1.y+=o.y;
    result2.x+=o.x;
    result2.y+=o.y;
    return;
}

1.13 矢量运算求几何模板

#include <iostream>
#include <cmath> 
#include <vector> 
#include <algorithm> 
#define MAX_N 100
using namespace std; 
 
 
///////////////////////////////////////////////////////////////////
//常量区
const double INF        = 1e10;     // 无穷大 
const double EPS        = 1e-15;    // 计算精度 
const int LEFT          = 0;        // 点在直线左边 
const int RIGHT         = 1;        // 点在直线右边 
const int ONLINE        = 2;        // 点在直线上 
const int CROSS         = 0;        // 两直线相交 
const int COLINE        = 1;        // 两直线共线 
const int PARALLEL      = 2;        // 两直线平行 
const int NOTCOPLANAR   = 3;        // 两直线不共面 
const int INSIDE        = 1;        // 点在图形内部 
const int OUTSIDE       = 2;        // 点在图形外部 
const int BORDER        = 3;        // 点在图形边界 
const int BAOHAN        = 1;        // 大圆包含小圆
const int NEIQIE        = 2;        // 内切
const int XIANJIAO      = 3;        // 相交
const int WAIQIE        = 4;        // 外切
const int XIANLI        = 5;        // 相离
const double pi           = acos(-1.0)  //圆周率
/////////////////////////////////////////////////////////////////// 
 
 
///////////////////////////////////////////////////////////////////
//类型定义区
struct Point {              // 二维点或矢量 
    double x, y; 
    double angle, dis; 
    Point() {} 
    Point(double x0, double y0): x(x0), y(y0) {} 
}; 
struct Point3D {            //三维点或矢量 
    double x, y, z; 
    Point3D() {} 
    Point3D(double x0, double y0, double z0): x(x0), y(y0), z(z0) {} 
}; 
struct Line {               // 二维的直线或线段 
    Point p1, p2; 
    Line() {} 
    Line(Point p10, Point p20): p1(p10), p2(p20) {} 
}; 
struct Line3D {             // 三维的直线或线段 
    Point3D p1, p2; 
    Line3D() {} 
    Line3D(Point3D p10, Point3D p20): p1(p10), p2(p20) {} 
}; 
struct Rect {              // 用长宽表示矩形的方法 w, h分别表示宽度和高度 
    double w, h; 
 Rect() {}
 Rect(double _w,double _h) : w(_w),h(_h) {}
}; 
struct Rect_2 {             // 表示矩形,左下角坐标是(xl, yl),右上角坐标是(xh, yh) 
    double xl, yl, xh, yh; 
 Rect_2() {}
 Rect_2(double _xl,double _yl,double _xh,double _yh) : xl(_xl),yl(_yl),xh(_xh),yh(_yh) {}
}; 
struct Circle {            //
 Point c;
 double r;
 Circle() {}
 Circle(Point _c,double _r) :c(_c),r(_r) {}
};
typedef vector<Point> Polygon;      // 二维多边形     
typedef vector<Point> Points;       // 二维点集 
typedef vector<Point3D> Points3D;   // 三维点集 
/////////////////////////////////////////////////////////////////// 
 
 
///////////////////////////////////////////////////////////////////
//基本函数区
inline double max(double x,double y) 
{ 
    return x > y ? x : y; 
} 
inline double min(double x, double y) 
{ 
    return x > y ? y : x; 
} 
inline bool ZERO(double x)              // x == 0 
{ 
    return (fabs(x) < EPS); 
} 
inline bool ZERO(Point p)               // p == 0 
{ 
    return (ZERO(p.x) && ZERO(p.y)); 
} 
inline bool ZERO(Point3D p)              // p == 0 
{ 
    return (ZERO(p.x) && ZERO(p.y) && ZERO(p.z)); 
} 
inline bool EQ(double x, double y)      // eqaul, x == y 
{ 
    return (fabs(x - y) < EPS); 
} 
inline bool NEQ(double x, double y)     // not equal, x != y 
{ 
    return (fabs(x - y) >= EPS); 
} 
inline bool LT(double x, double y)     // less than, x < y 
{ 
    return ( NEQ(x, y) && (x < y) ); 
} 
inline bool GT(double x, double y)     // greater than, x > y 
{ 
    return ( NEQ(x, y) && (x > y) ); 
} 
inline bool LEQ(double x, double y)     // less equal, x <= y 
{ 
    return ( EQ(x, y) || (x < y) ); 
} 
inline bool GEQ(double x, double y)     // greater equal, x >= y 
{ 
    return ( EQ(x, y) || (x > y) ); 
} 
// 注意!!! 
// 如果是一个很小的负的浮点数 
// 保留有效位数输出的时候会出现-0.000这样的形式, 
// 前面多了一个负号 
// 这就会导致错误!!!!!! 
// 因此在输出浮点数之前,一定要调用次函数进行修正! 
inline double FIX(double x) 
{ 
    return (fabs(x) < EPS) ? 0 : x; 
} 
////////////////////////////////////////////////////////////////////////////////////// 
 
 
/////////////////////////////////////////////////////////////////////////////////////
//二维矢量运算 
bool operator==(Point p1, Point p2)  
{ 
    return ( EQ(p1.x, p2.x) &&  EQ(p1.y, p2.y) ); 
} 
bool operator!=(Point p1, Point p2)  
{ 
    return ( NEQ(p1.x, p2.x) ||  NEQ(p1.y, p2.y) ); 
} 
bool operator<(Point p1, Point p2) 
{ 
    if (NEQ(p1.x, p2.x)) { 
        return (p1.x < p2.x); 
    } else { 
        return (p1.y < p2.y); 
    } 
} 
Point operator+(Point p1, Point p2)  
{ 
    return Point(p1.x + p2.x, p1.y + p2.y); 
} 
Point operator-(Point p1, Point p2)  
{ 
    return Point(p1.x - p2.x, p1.y - p2.y); 
} 
double operator*(Point p1, Point p2) // 计算叉乘 p1 × p2 
{ 
    return (p1.x * p2.y - p2.x * p1.y); 
} 
double operator&(Point p1, Point p2) { // 计算点积 p1·p2 
    return (p1.x * p2.x + p1.y * p2.y); 
} 
double Norm(Point p) // 计算矢量p的模 
{ 
    return sqrt(p.x * p.x + p.y * p.y); 
} 
// 把矢量p旋转角度angle (弧度表示) 
// angle > 0表示逆时针旋转 
// angle < 0表示顺时针旋转 
Point Rotate(Point p, double angle) 
{ 
    Point result; 
    result.x = p.x * cos(angle) - p.y * sin(angle); 
    result.y = p.x * sin(angle) + p.y * cos(angle); 
    return result; 
} 
////////////////////////////////////////////////////////////////////////////////////// 
 
 
////////////////////////////////////////////////////////////////////////////////////// 
//三维矢量运算 
bool operator==(Point3D p1, Point3D p2)  
{ 
    return ( EQ(p1.x, p2.x) && EQ(p1.y, p2.y) && EQ(p1.z, p2.z) ); 
} 
bool operator<(Point3D p1, Point3D p2) 
{ 
    if (NEQ(p1.x, p2.x)) { 
        return (p1.x < p2.x); 
    } else if (NEQ(p1.y, p2.y)) { 
        return (p1.y < p2.y); 
    } else { 
        return (p1.z < p2.z); 
    } 
} 
Point3D operator+(Point3D p1, Point3D p2)  
{ 
    return Point3D(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); 
} 
Point3D operator-(Point3D p1, Point3D p2)  
{ 
    return Point3D(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); 
} 
Point3D operator*(Point3D p1, Point3D p2) // 计算叉乘 p1 x p2 
{ 
    return Point3D(p1.y * p2.z - p1.z * p2.y, 
        p1.z * p2.x - p1.x * p2.z, 
        p1.x * p2.y - p1.y * p2.x );         
} 
double operator&(Point3D p1, Point3D p2) { // 计算点积 p1·p2 
    return (p1.x * p2.x + p1.y * p2.y + p1.z * p2.z); 
} 
double Norm(Point3D p) // 计算矢量p的模 
{ 
    return sqrt(p.x * p.x + p.y * p.y + p.z * p.z); 
} 
 
 
////////////////////////////////////////////////////////////////////////////////////// 
 
 
/////////////////////////////////////////////////////////////////////////////////////
//点.线段.直线问题
//
double Distance(Point p1, Point p2) //2点间的距离
{
 return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
double Distance(Point3D p1, Point3D p2) //2点间的距离,三维
{
 return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
}
double Distance(Point p, Line L) // 求二维平面上点到直线的距离 
{ 
    return ( fabs((p - L.p1) * (L.p2 - L.p1)) / Norm(L.p2 - L.p1) ); 
} 
double Distance(Point3D p, Line3D L)// 求三维空间中点到直线的距离 
{ 
    return ( Norm((p - L.p1) * (L.p2 - L.p1)) / Norm(L.p2 - L.p1) ); 
} 
bool OnLine(Point p, Line L) // 判断二维平面上点p是否在直线L上 
{ 
    return ZERO( (p - L.p1) * (L.p2 - L.p1) ); 
} 
bool OnLine(Point3D p, Line3D L) // 判断三维空间中点p是否在直线L上 
{ 
    return ZERO( (p - L.p1) * (L.p2 - L.p1) ); 
} 
int Relation(Point p, Line L) // 计算点p与直线L的相对关系 ,返回ONLINE,LEFT,RIGHT
{ 
    double res = (L.p2 - L.p1) * (p - L.p1); 
    if (EQ(res, 0)) { 
        return ONLINE; 
    } else if (res > 0) { 
        return LEFT; 
    } else { 
        return RIGHT; 
    } 
} 
bool SameSide(Point p1, Point p2, Line L) // 判断点p1, p2是否在直线L的同侧 
{ 
    double m1 = (p1 - L.p1) * (L.p2 - L.p1); 
    double m2 = (p2 - L.p1) * (L.p2 - L.p1); 
    return GT(m1 * m2, 0); 
} 
bool OnLineSeg(Point p, Line L) // 判断二维平面上点p是否在线段l上 
{ 
    return ( ZERO( (L.p1 - p) * (L.p2 - p) ) && 
        LEQ((p.x - L.p1.x)*(p.x - L.p2.x), 0) && 
        LEQ((p.y - L.p1.y)*(p.y - L.p2.y), 0) ); 
} 
bool OnLineSeg(Point3D p, Line3D L) // 判断三维空间中点p是否在线段l上 
{ 
    return ( ZERO((L.p1 - p) * (L.p2 - p)) && 
        EQ( Norm(p - L.p1) + Norm(p - L.p2), Norm(L.p2 - L.p1)) ); 
} 
Point SymPoint(Point p, Line L) // 求二维平面上点p关于直线L的对称点 
{ 
    Point result; 
    double a = L.p2.x - L.p1.x; 
    double b = L.p2.y - L.p1.y; 
    double t = ( (p.x - L.p1.x) * a + (p.y - L.p1.y) * b ) / (a*a + b*b); 
    result.x = 2 * L.p1.x + 2 * a * t - p.x; 
    result.y = 2 * L.p1.y + 2 * b * t - p.y; 
    return result; 
} 
bool Coplanar(Points3D points) // 判断一个点集中的点是否全部共面 
{ 
    int i; 
    Point3D p; 
 
 
    if (points.size() < 4) return true; 
    p = (points[2] - points[0]) * (points[1] - points[0]); 
    for (i = 3; i < points.size(); i++) { 
        if (! ZERO(p & points[i]) ) return false; 
    } 
    return true; 
} 
bool LineIntersect(Line L1, Line L2) // 判断二维的两直线是否相交 
{ 
    return (! ZERO((L1.p1 - L1.p2)*(L2.p1 - L2.p2)) );  // 是否平行 
} 
bool LineIntersect(Line3D L1, Line3D L2) // 判断三维的两直线是否相交 
{ 
    Point3D p1 = L1.p1 - L1.p2; 
    Point3D p2 = L2.p1 - L2.p2; 
    Point3D p  = p1 * p2; 
    if (ZERO(p)) return false;      // 是否平行 
    p = (L2.p1 - L1.p2) * (L1.p1 - L1.p2); 
    return ZERO(p & L2.p2);         // 是否共面 
} 
bool LineSegIntersect(Line L1, Line L2) // 判断二维的两条线段是否相交 
{ 
    return ( GEQ( max(L1.p1.x, L1.p2.x), min(L2.p1.x, L2.p2.x) ) && 
        GEQ( max(L2.p1.x, L2.p2.x), min(L1.p1.x, L1.p2.x) ) && 
        GEQ( max(L1.p1.y, L1.p2.y), min(L2.p1.y, L2.p2.y) ) && 
        GEQ( max(L2.p1.y, L2.p2.y), min(L1.p1.y, L1.p2.y) ) && 
        LEQ( ((L2.p1 - L1.p1) * (L1.p2 - L1.p1)) * ((L2.p2 -  L1.p1) * (L1.p2 - L1.p1)), 0 ) && 
        LEQ( ((L1.p1 - L2.p1) * (L2.p2 - L2.p1)) * ((L1.p2 -  L2.p1) * (L2.p2 - L2.p1)), 0 ) );              
} 
bool LineSegIntersect(Line3D L1, Line3D L2) // 判断三维的两条线段是否相交 
{ 
    // todo 
    return true; 
} 
// 计算两条二维直线的交点,结果在参数P中返回 
// 返回值说明了两条直线的位置关系:  COLINE   -- 共线  PARALLEL -- 平行  CROSS    -- 相交 
int CalCrossPoint(Line L1, Line L2, Point& P) 
{ 
    double A1, B1, C1, A2, B2, C2; 
 
 
    A1 = L1.p2.y - L1.p1.y; 
    B1 = L1.p1.x - L1.p2.x; 
    C1 = L1.p2.x * L1.p1.y - L1.p1.x * L1.p2.y; 
 
 
    A2 = L2.p2.y - L2.p1.y; 
    B2 = L2.p1.x - L2.p2.x; 
    C2 = L2.p2.x * L2.p1.y - L2.p1.x * L2.p2.y; 
 
 
    if (EQ(A1 * B2, B1 * A2))    { 
        if (EQ( (A1 + B1) * C2, (A2 + B2) * C1 )) { 
            return COLINE; 
        } else { 
            return PARALLEL; 
        } 
    } else { 
        P.x = (B2 * C1 - B1 * C2) / (A2 * B1 - A1 * B2); 
        P.y = (A1 * C2 - A2 * C1) / (A2 * B1 - A1 * B2); 
        return CROSS; 
    } 
} 
// 计算两条三维直线的交点,结果在参数P中返回 
// 返回值说明了两条直线的位置关系 COLINE   -- 共线  PARALLEL -- 平行  CROSS    -- 相交  NONCOPLANAR -- 不公面 
int CalCrossPoint(Line3D L1, Line3D L2, Point3D& P) 
{ 
    // todo 
    return 0; 
} 
// 计算点P到直线L的最近点 
Point NearestPointToLine(Point P, Line L)  
{ 
    Point result; 
    double a, b, t; 
 
 
    a = L.p2.x - L.p1.x; 
    b = L.p2.y - L.p1.y; 
    t = ( (P.x - L.p1.x) * a + (P.y - L.p1.y) * b ) / (a * a + b * b); 
 
 
    result.x = L.p1.x + a * t; 
    result.y = L.p1.y + b * t; 
    return result; 
} 
// 计算点P到线段L的最近点 
Point NearestPointToLineSeg(Point P, Line L)  
{ 
    Point result; 
    double a, b, t; 
 
 
    a = L.p2.x - L.p1.x; 
    b = L.p2.y - L.p1.y; 
    t = ( (P.x - L.p1.x) * a + (P.y - L.p1.y) * b ) / (a * a + b * b); 
 
 
    if ( GEQ(t, 0) && LEQ(t, 1) ) { 
        result.x = L.p1.x + a * t; 
        result.y = L.p1.y + b * t; 
    } else { 
        if ( Norm(P - L.p1) < Norm(P - L.p2) ) { 
            result = L.p1; 
        } else { 
            result = L.p2; 
        } 
    } 
    return result; 
} 
// 计算险段L1到线段L2的最短距离 
double MinDistance(Line L1, Line L2)  
{ 
    double d1, d2, d3, d4; 
 
 
    if (LineSegIntersect(L1, L2)) { 
        return 0; 
    } else { 
        d1 = Norm( NearestPointToLineSeg(L1.p1, L2) - L1.p1 ); 
        d2 = Norm( NearestPointToLineSeg(L1.p2, L2) - L1.p2 ); 
        d3 = Norm( NearestPointToLineSeg(L2.p1, L1) - L2.p1 ); 
        d4 = Norm( NearestPointToLineSeg(L2.p2, L1) - L2.p2 ); 
         
        return min( min(d1, d2), min(d3, d4) ); 
    } 
} 
// 求二维两直线的夹角, 
// 返回值是0~Pi之间的弧度 
double Inclination(Line L1, Line L2) 
{ 
    Point u = L1.p2 - L1.p1; 
    Point v = L2.p2 - L2.p1; 
    return acos( (u & v) / (Norm(u)*Norm(v)) ); 
} 
// 求三维两直线的夹角, 
// 返回值是0~Pi之间的弧度 
double Inclination(Line3D L1, Line3D L2) 
{ 
    Point3D u = L1.p2 - L1.p1; 
    Point3D v = L2.p2 - L2.p1; 
    return acos( (u & v) / (Norm(u)*Norm(v)) ); 
} 
/////////////////////////////////////////////////////////////////////////////
 
 
/////////////////////////////////////////////////////////////////////////////
// 判断两个矩形是否相交 
// 如果相邻不算相交 
bool Intersect(Rect_2 r1, Rect_2 r2) 
{ 
    return ( max(r1.xl, r2.xl) < min(r1.xh, r2.xh) && 
             max(r1.yl, r2.yl) < min(r1.yh, r2.yh) ); 
} 
// 判断矩形r2是否可以放置在矩形r1内 
// r2可以任意地旋转 
//发现原来的给出的方法过不了OJ上的无归之室这题,
//所以用了自己的代码
bool IsContain(Rect r1, Rect r2)      //矩形的w>h
 { 
     if(r1.w >r2.w && r1.h > r2.h) return true;
     else
     {
        double r = sqrt(r2.w*r2.w + r2.h*r2.h) / 2.0;
        double alpha = atan2(r2.h,r2.w);
        double sita = asin((r1.h/2.0)/r);
        double x = r * cos(sita - 2*alpha);
        double y = r * sin(sita - 2*alpha);
        if(x < r1.w/2.0 && y < r1.h/2.0 && x > 0 && y > -r1.h/2.0) return true;
        else return false;
     }
} 
////////////////////////////////////////////////////////////////////////
 
 
////////////////////////////////////////////////////////////////////////
//
Point Center(const Circle & C) //圆心
{      
    return C.c;      
}    
 
 
double Area(const Circle &C)
{
 return pi*C.r*C.r; 
} 
 
 
double CommonArea(const Circle & A, const Circle & B) //两个圆的公共面积       
{      
    double area = 0.0;      
    const Circle & M = (A.r > B.r) ? A : B;      
    const Circle & N = (A.r > B.r) ? B : A;      
    double D = Distance(Center(M), Center(N));      
    if ((D < M.r + N.r) && (D > M.r - N.r))      
    {      
        double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);      
        double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);      
        double alpha = 2.0 * acos(cosM);      
        double beta  = 2.0 * acos(cosN);      
        double TM = 0.5 * M.r * M.r * sin(alpha);      
        double TN = 0.5 * N.r * N.r * sin(beta);      
        double FM = (alpha / (2*pi)) * Area(M);      
        double FN = (beta / (2*pi)) * Area(N);      
        area = FM + FN - TM - TN;      
    }      
    else if (D <= M.r - N.r)      
    {      
        area = Area(N);      
    }      
    return area;      
} 
     
bool IsInCircle(const Circle & C, const Rect_2 & rect)//判断圆是否在矩形内(不允许相切)
{      
    return (GT(C.c.x - C.r, rect.xl)
  &&  LT(C.c.x + C.r, rect.xh)
  &&  GT(C.c.y - C.r, rect.yl)
  &&  LT(C.c.y + C.r, rect.yh));      
}  
 
 
//判断2圆的位置关系
//返回: 
//BAOHAN   = 1;        // 大圆包含小圆
//NEIQIE   = 2;        // 内切
//XIANJIAO = 3;        // 相交
//WAIQIE   = 4;        // 外切
//XIANLI   = 5;        // 相离
int CirCir(const Circle &c1, const Circle &c2)//判断2圆的位置关系
{
 double dis = Distance(c1.c,c2.c);
 if(LT(dis,fabs(c1.r-c2.r))) return BAOHAN;
 if(EQ(dis,fabs(c1.r-c2.r))) return NEIQIE;
 if(LT(dis,c1.r+c2.r) && GT(dis,fabs(c1.r-c2.r))) return XIANJIAO;
 if(EQ(dis,c1.r+c2.r)) return WAIQIE;
 return XIANLI;
}
////////////////////////////////////////////////////////////////////////
 

 

1.14结构体表示几何图形

//计算几何(二维)   
#include <cmath>   
#include <cstdio>   
#include <algorithm>   
using namespace std;   
 
 
typedef double TYPE;   
#define Abs(x) (((x)>0)?(x):(-(x)))   
#define Sgn(x) (((x)<0)?(-1):(1))   
#define Max(a,b) (((a)>(b))?(a):(b))   
#define Min(a,b) (((a)<(b))?(a):(b))   
#define Epsilon 1e-8   
#define Infinity 1e+10   
#define PI acos(-1.0)//3.14159265358979323846   
TYPE Deg2Rad(TYPE deg){return (deg * PI / 180.0);}   
TYPE Rad2Deg(TYPE rad){return (rad * 180.0 / PI);}   
TYPE Sin(TYPE deg){return sin(Deg2Rad(deg));}   
TYPE Cos(TYPE deg){return cos(Deg2Rad(deg));}   
TYPE ArcSin(TYPE val){return Rad2Deg(asin(val));}   
TYPE ArcCos(TYPE val){return Rad2Deg(acos(val));}   
TYPE Sqrt(TYPE val){return sqrt(val);}  
 
 
//
struct POINT   
{   
  TYPE x;   
  TYPE y;   
  POINT() : x(0), y(0) {};   
  POINT(TYPE _x_, TYPE _y_) : x(_x_), y(_y_) {};   
};   
// 两个点的距离   
TYPE Distance(const POINT & a, const POINT & b)   
{   
  return Sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));   
}   
//线段   
struct SEG   
{     
  POINT a; //起点   
  POINT b; //终点   
  SEG() {};   
  SEG(POINT _a_, POINT _b_):a(_a_),b(_b_) {};   
};     
//直线(两点式)   
struct LINE   
{   
  POINT a;   
  POINT b;   
  LINE() {};   
  LINE(POINT _a_, POINT _b_) : a(_a_), b(_b_) {};   
};   
//直线(一般式)   
struct LINE2   
{   
  TYPE A,B,C;   
  LINE2() {};   
  LINE2(TYPE _A_, TYPE _B_, TYPE _C_) : A(_A_), B(_B_), C(_C_) {};   
};   
 
 
//两点式化一般式   
LINE2 Line2line(const LINE & L) // y=kx+c k=y/x
{   
  LINE2 L2;   
  L2.A = L.b.y - L.a.y;   
  L2.B = L.a.x - L.b.x;   
  L2.C = L.b.x * L.a.y - L.a.x * L.b.y;   
  return L2;   
}   
 
 
// 引用返回直线 Ax + By + C =0 的系数   
void Coefficient(const LINE & L, TYPE & A, TYPE & B, TYPE & C)   
{   
  A = L.b.y - L.a.y;   
  B = L.a.x - L.b.x;   
  C = L.b.x * L.a.y - L.a.x * L.b.y;   
}   
void Coefficient(const POINT & p,const TYPE a,TYPE & A,TYPE & B,TYPE & C)   
{   
  A = Cos(a);   
  B = Sin(a);   
  C = - (p.y * B + p.x * A);   
}   
//判等(值,点,直线)   
bool IsEqual(TYPE a, TYPE b)   
{   
  return (Abs(a - b) <Epsilon);   
}   
bool IsEqual(const POINT & a, const POINT & b)   
{   
  return (IsEqual(a.x, b.x) && IsEqual(a.y, b.y));   
}   
bool IsEqual(const LINE & A, const LINE & B)   
{   
  TYPE A1, B1, C1;   
  TYPE A2, B2, C2;   
  Coefficient(A, A1, B1, C1);   
  Coefficient(B, A2, B2, C2);   
  return IsEqual(A1 * B2, A2 * B1) && IsEqual(A1 * C2, A2 * C1) && IsEqual(B1 * C2, B2 * C1);   
}   
// 矩形   
struct RECT   
{   
  POINT a; // 左下点     
  POINT b; // 右上点     
  RECT() {};   
  RECT(const POINT & _a_, const POINT & _b_) { a = _a_; b = _b_; }   
};   
 
 
//矩形化标准   
RECT Stdrect(const RECT & q)
{   
  TYPE t;   
  RECT p=q;   
  if(p.a.x > p.b.x) swap(p.a.x , p.b.x);    
  if(p.a.y > p.b.y) swap(p.a.y , p.b.y);    
  return p;   
}   
 
 
//根据下标返回矩形的边     
SEG Edge(const RECT & rect, int idx)   
{   
  SEG edge;   
  while (idx < 0) idx += 4;   
  switch (idx % 4)   
  {   
  case 0: //下边
    edge.a = rect.a;   
    edge.b = POINT(rect.b.x, rect.a.y);   
    break;   
  case 1: //右边
    edge.a = POINT(rect.b.x, rect.a.y);   
    edge.b = rect.b;   
    break;   
  case 2: //上边  
    edge.a = rect.b;   
    edge.b = POINT(rect.a.x, rect.b.y);   
    break;   
  case 3: //左边  
    edge.a = POINT(rect.a.x, rect.b.y);   
    edge.b = rect.a;   
    break;   
  default:   
    break;   
  }   
  return edge;   
}   
 
 
//矩形的面积   
TYPE Area(const RECT & rect)   
{   
  return (rect.b.x - rect.a.x) * (rect.b.y - rect.a.y);   
}   
 
 
//两个矩形的公共面积     
TYPE CommonArea(const RECT & A, const RECT & B)   
{   
  TYPE area = 0.0;   
  POINT LL(Max(A.a.x, B.a.x), Max(A.a.y, B.a.y));   
  POINT UR(Min(A.b.x, B.b.x), Min(A.b.y, B.b.y));   
  if( (LL.x <= UR.x) && (LL.y <= UR.y) )   
  {   
    area = Area(RECT(LL, UR));   
  }   
  return area;   
}  
//判断圆是否在矩形内(不允许相切)   
bool IsInCircle(const CIRCLE & circle, const RECT & rect)   
{   
  return (circle.x - circle.r > rect.a.x) &&   
    (circle.x + circle.r < rect.b.x) &&   
    (circle.y - circle.r > rect.a.y) &&   
    (circle.y + circle.r < rect.b.y);   
}   
 
 
//判断矩形是否在圆内(不允许相切)   
bool IsInRect(const CIRCLE & circle, const RECT & rect)   
{   
  POINT c,d;   
  c.x=rect.a.x; c.y=rect.b.y;   
  d.x=rect.b.x; d.y=rect.a.y;   
  return (Distance( Center(circle) , rect.a ) < circle.r) &&   
    (Distance( Center(circle) , rect.b ) < circle.r) &&   
    (Distance( Center(circle) , c ) < circle.r) &&   
    (Distance( Center(circle) , d ) < circle.r);   
}   
 
 
//判断矩形是否与圆相离(不允许相切)   
bool Isoutside(const CIRCLE & circle, const RECT & rect)   
{   
  POINT c,d;   
  c.x=rect.a.x; c.y=rect.b.y;   
  d.x=rect.b.x; d.y=rect.a.y;   
  return (Distance( Center(circle) , rect.a ) > circle.r) &&   
    (Distance( Center(circle) , rect.b ) > circle.r) &&   
    (Distance( Center(circle) , c ) > circle.r) &&   
    (Distance( Center(circle) , d ) > circle.r) &&   
    (rect.a.x > circle.x || circle.x > rect.b.x || rect.a.y > circle.y || circle.y > rect.b.y) ||   
    ((circle.x - circle.r > rect.b.x) ||   
    (circle.x + circle.r < rect.a.x) ||   
    (circle.y - circle.r > rect.b.y) ||   
    (circle.y + circle.r < rect.a.y));   
}   

 

 

 

求多边形最大宽度

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define lowbit(a) ((a) & -(a))
#define clean(a, b) memset(a, b, sizeof(a))
const int mod = 1e9 + 7;
const double inf = 1e50;
const int maxn = 1e5 + 9;

//////////////////////////////////////////////////////////////////////////
int n;

struct node
{
    int x, y;
    node() {}
    node(int _x, int _y){  x = _x, y = _y;}
    node operator-(node b)
    {
        return node(x - b.x, y - b.y);
    }
    double len(){ return hypot(x, y); }
} a[maxn];
double cross(node a, node b) { return a.x * b.y - a.y * b.x; }
double dist(node p, node a, node b) { return cross(p - a, b - a) / (b - a).len(); }
int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)  scanf("%d %d", &a[i].x, &a[i].y);
    double ans = inf;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j < i; j++)
        {
            double l = inf, r = -inf;
            for (int k = 1; k <= n; k++)
            {
                l = min(l, dist(a[k], a[i], a[j]));
                r = max(r, dist(a[k], a[i], a[j]));
            }
            r -= l;
            ans = min(ans, r);
        }
    }
    printf("%.10f\n", ans);
    return 0;
}

 

posted @ 2020-04-09 13:25  L·S·D  阅读(177)  评论(0)    收藏  举报