import numpy as np
from numpy import array, linalg
class MLinearRegression:
def __init__(self):
self.coef_ = None #代表的是权重
self.interception_ = None #代表的是截距
self._theta = None #代表的是权重+截距
'''
规范下代码, X_train代表的是矩阵X大写, y_train代表的是矢量y小写
'''
def fit(self,X_train, y_train):
assert X_train.shape[0] == y_train.shape[0], \
"训练集的矩阵行数与标签的行数保持一致"
ones = np.ones((X_train.shape[0], 1))
X_b = np.hstack((ones, X_train)) #将X矩阵转为X_b矩阵,其中第一列为1,其余不变
self._theta = linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
self.interception_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def predict(self,X_predict):
ones = np.ones((X_predict.shape[0], 1))
X_b = np.hstack((ones, X_predict)) #将X矩阵转为X_b矩阵,其中第一列为1,其余不变
return X_b.dot(self._theta) #得到的即为预测值
def mean_squared_error(self, y_true, y_predict):
return np.sum((y_true - y_predict) ** 2) / len(y_true)
def score(self,X_test,y_test): #使用r square
y_predict = self.predict(X_test)
return 1 - (self.mean_squared_error(y_test,y_predict) / (np.var(y_test)))
if __name__ == '__main__':
mlr=MLinearRegression()
X_train=np.array([[90,11,1],[31,57,1],[1,1,1]])
y_train=np.array([[12,92],[76,65]])
#mlr.fit(X_train,y_train)
#print(mlr.predict(np.array([[94,27]])))
print(np.zeros(3).T)