Tensorflow2.0 + conda安装记录

------------恢复内容开始------------

tf2.0不仅应用的动态图,在代码量上比1.4大大优化,安装相比于tf1.4之类也要简单一点,特别是有anaconda辅助的时候。

首先是经典anaconda创建环境:

1 conda create -n tf2.0 python=3.7

 

 

 然后是激活环境:

1 conda activate tf2.0

pip直接安装tf2.0:

pip install tensorflow-gpu==2.0

 

成功安装这些依赖包之后视为安装完成。针对tf的gpu版本,使用anaconda可以实现多版本的tf共存。在tf2.0环境之下执行如下指令:

1 conda install cudnn=7.6.0
2 conda install cudatoolkit=10.0.130

安装cudnn和cuda即可。

由于我平常使用pycharm,所以还需要将anaconda的环境导入pycharm中。点击file->setting->Project:tf2.0->Project Interpreter:

 

在右上角添加新的conda existing environment:

 

最后找一个tf2.0的示例程序检测一下是否成功运行:

from __future__ import absolute_import, division, print_function, unicode_literals

# 安装 TensorFlow

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)
...
42016
/60000 [====================>.........] - ETA: 0s - loss: 0.0737 - accuracy: 0.9772 43136/60000 [====================>.........] - ETA: 0s - loss: 0.0737 - accuracy: 0.9771 44256/60000 [=====================>........] - ETA: 0s - loss: 0.0740 - accuracy: 0.9769 45312/60000 [=====================>........] - ETA: 0s - loss: 0.0742 - accuracy: 0.9767 46432/60000 [======================>.......] - ETA: 0s - loss: 0.0740 - accuracy: 0.9768 47584/60000 [======================>.......] - ETA: 0s - loss: 0.0741 - accuracy: 0.9768 48736/60000 [=======================>......] - ETA: 0s - loss: 0.0739 - accuracy: 0.9769 49824/60000 [=======================>......] - ETA: 0s - loss: 0.0736 - accuracy: 0.9770 50912/60000 [========================>.....] - ETA: 0s - loss: 0.0739 - accuracy: 0.9768 52096/60000 [=========================>....] - ETA: 0s - loss: 0.0738 - accuracy: 0.9769 53248/60000 [=========================>....] - ETA: 0s - loss: 0.0736 - accuracy: 0.9769 54272/60000 [==========================>...] - ETA: 0s - loss: 0.0735 - accuracy: 0.9769 55392/60000 [==========================>...] - ETA: 0s - loss: 0.0734 - accuracy: 0.9769 56480/60000 [===========================>..] - ETA: 0s - loss: 0.0733 - accuracy: 0.9770 57568/60000 [===========================>..] - ETA: 0s - loss: 0.0733 - accuracy: 0.9769 58656/60000 [============================>.] - ETA: 0s - loss: 0.0740 - accuracy: 0.9767 59776/60000 [============================>.] - ETA: 0s - loss: 0.0739 - accuracy: 0.9768 60000/60000 [==============================] - 3s 47us/sample - loss: 0.0740 - accuracy: 0.9768 10000/1 - 0s - loss: 0.0387 - accuracy: 0.9776

 

posted @ 2020-06-02 13:41  HarryC  阅读(1218)  评论(0)    收藏  举报