Tensorflow2.0 + conda安装记录
------------恢复内容开始------------
tf2.0不仅应用的动态图,在代码量上比1.4大大优化,安装相比于tf1.4之类也要简单一点,特别是有anaconda辅助的时候。
首先是经典anaconda创建环境:
1 conda create -n tf2.0 python=3.7

然后是激活环境:
1 conda activate tf2.0
pip直接安装tf2.0:
pip install tensorflow-gpu==2.0

成功安装这些依赖包之后视为安装完成。针对tf的gpu版本,使用anaconda可以实现多版本的tf共存。在tf2.0环境之下执行如下指令:
1 conda install cudnn=7.6.0 2 conda install cudatoolkit=10.0.130
安装cudnn和cuda即可。
由于我平常使用pycharm,所以还需要将anaconda的环境导入pycharm中。点击file->setting->Project:tf2.0->Project Interpreter:

在右上角添加新的conda existing environment:

最后找一个tf2.0的示例程序检测一下是否成功运行:
from __future__ import absolute_import, division, print_function, unicode_literals # 安装 TensorFlow import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2)
...
42016/60000 [====================>.........] - ETA: 0s - loss: 0.0737 - accuracy: 0.9772 43136/60000 [====================>.........] - ETA: 0s - loss: 0.0737 - accuracy: 0.9771 44256/60000 [=====================>........] - ETA: 0s - loss: 0.0740 - accuracy: 0.9769 45312/60000 [=====================>........] - ETA: 0s - loss: 0.0742 - accuracy: 0.9767 46432/60000 [======================>.......] - ETA: 0s - loss: 0.0740 - accuracy: 0.9768 47584/60000 [======================>.......] - ETA: 0s - loss: 0.0741 - accuracy: 0.9768 48736/60000 [=======================>......] - ETA: 0s - loss: 0.0739 - accuracy: 0.9769 49824/60000 [=======================>......] - ETA: 0s - loss: 0.0736 - accuracy: 0.9770 50912/60000 [========================>.....] - ETA: 0s - loss: 0.0739 - accuracy: 0.9768 52096/60000 [=========================>....] - ETA: 0s - loss: 0.0738 - accuracy: 0.9769 53248/60000 [=========================>....] - ETA: 0s - loss: 0.0736 - accuracy: 0.9769 54272/60000 [==========================>...] - ETA: 0s - loss: 0.0735 - accuracy: 0.9769 55392/60000 [==========================>...] - ETA: 0s - loss: 0.0734 - accuracy: 0.9769 56480/60000 [===========================>..] - ETA: 0s - loss: 0.0733 - accuracy: 0.9770 57568/60000 [===========================>..] - ETA: 0s - loss: 0.0733 - accuracy: 0.9769 58656/60000 [============================>.] - ETA: 0s - loss: 0.0740 - accuracy: 0.9767 59776/60000 [============================>.] - ETA: 0s - loss: 0.0739 - accuracy: 0.9768 60000/60000 [==============================] - 3s 47us/sample - loss: 0.0740 - accuracy: 0.9768 10000/1 - 0s - loss: 0.0387 - accuracy: 0.9776

浙公网安备 33010602011771号