[python]Flask - Tracking ID的设计

前言

在实际业务中,根据 tracking_id 追溯一条请求的完整处理路径是比较常见的需求。借助 Flask 自带的全局对象 g 以及钩子函数,可以很容易地为每条请求添加 tracking_id,并在日志中自动记录。

主要内容:

  • 如何为每条请求添加 tracking_id
  • 如何为日志自动添加 tracking_id 记录
  • 如何自定义响应类,实现统一的响应格式,并在响应头中添加 tracking_id
  • 视图函数单元测试示例
  • Gunicorn 配置

项目结构

虽然内容看起来很多,但 tracking_id 的实现其实很简单。本文按照生产项目的规范组织了代码,添加了 Gunicorn 配置和单元测试代码,以及规范了日志格式和 JSON 响应格式。

├── apis
│   ├── common
│   │   ├── common.py
│   │   └── __init__.py
│   └── __init__.py
├── gunicorn.conf.py
├── handles
│   └── user.py
├── logs
│   ├── access.log
│   └── error.log
├── main.py
├── middlewares
│   ├── __init__.py
│   └── tracking_id.py
├── pkgs
│   └── log
│       ├── app_log.py
│       └── __init__.py
├── pyproject.toml
├── pytest.ini
├── README.md
├── responses
│   ├── __init__.py
│   └── json_response.py
├── tests
│   └── apis
│       └── test_common.py
├── tmp
│   └── gunicorn.pid
└── uv.lock

安装依赖

uv add flask
uv add gunicorn gevent  # 生产环境部署一般依赖这两个
uv add --dev pytest           # 测试库

实现添加 tracking_id 的中间件

代码文件:middlewares/tracking_id.py

from uuid import uuid4

from flask import Flask, Response, g, request


def tracking_id_middleware(app: Flask):
    """
    跟踪 ID 中间件
    为每个请求生成或获取跟踪 ID,用于追踪请求链路
    """
    
    @app.before_request
    def tracking_id_before_request():
        """
        请求前处理函数
        检查请求头中是否包含 X-Tracking-ID,如果没有则生成一个新的 UUID 作为跟踪 ID
        并将其存储到 Flask 的全局对象 g 中,供后续处理使用
        """
        # 从请求头中获取 X-Tracking-ID
        tracking_id = request.headers.get("X-Tracking-ID")
        if not tracking_id:
            # 如果请求头中没有 X-Tracking-ID,则生成一个新的 UUID
            tracking_id = str(uuid4())
        # 将跟踪 ID 存储到 Flask 的全局对象 g 中,供后续处理使用
        g.tracking_id = tracking_id

    @app.after_request
    def tracking_id_after_request(response: Response):
        """
        请求后处理函数
        将跟踪 ID 添加到响应头中,以便客户端知道本次请求的跟踪 ID
        """
        # 检查响应头中是否已经有 X-Tracking-ID
        tracking_id = response.headers.get("X-Tracking-ID", "")
        if not tracking_id:
            # 如果响应头中没有 X-Tracking-ID,则从全局对象 g 中获取
            tracking_id = g.get("tracking_id", "")
            # 将跟踪 ID 添加到响应头中
            response.headers["X-Tracking-ID"] = tracking_id
        return response

    # 返回应用实例
    return app

代码文件 middlewares/__init__.py,方便其他模块导入

from .tracking_id import tracking_id_middleware

__all__ = [
    "tracking_id_middleware",
]

日志模块 - 自动记录 tracking_id

实现一个简单的输出到控制台的日志模块,日志格式为 JSON,自动添加 tracking_id 到日志中,避免手动在 logger.info() 这类方法中传入 tracking_id

代码文件 pkgs/log/app_log.py

import json
import logging
import sys

from flask import g


class JSONFormatter(logging.Formatter):
    """日志格式化器,输出 JSON 格式的日志。"""

    def format(self, record: logging.LogRecord) -> str:
        log_record = {
            "@timestamp": self.formatTime(record, "%Y-%m-%dT%H:%M:%S%z"),
            "level": record.levelname,
            "name": record.name,
            # "processName": record.processName,  # 如需记录进程名可取消注释
            "tracking_id": getattr(record, "tracking_id", None),
            "loc": "%s:%d" % (record.filename, record.lineno),
            "func": record.funcName,
            "message": record.getMessage(),
        }

        return json.dumps(log_record, ensure_ascii=False, default=str)


class TrackingIDFilter(logging.Filter):
    """日志过滤器,为日志记录添加 tracking_id。"""

    def filter(self, record):
        record.tracking_id = g.get("tracking_id", None)
        return True


def _setup_console_handler(level: int) -> logging.StreamHandler:
    """设置控制台日志处理器。

    Args:
        level (int): 日志级别。
    """
    handler = logging.StreamHandler(sys.stdout)
    handler.setLevel(level)
    handler.setFormatter(JSONFormatter())
    return handler


def setup_app_logger(level: int = logging.INFO, name: str = "app") -> logging.Logger:
    logger = logging.getLogger(name)

    if logger.hasHandlers():
        return logger

    logger.setLevel(level)
    logger.propagate = False

    logger.addHandler(_setup_console_handler(level))
    logger.addFilter(TrackingIDFilter())

    return logger

pkgs/log/__init__.py 中初始化 logger,实现单例调用。

from .app_log import setup_app_logger

logger = setup_app_logger()

__all__ = ["logger"]

自定义响应类

规范 JSON 类型的响应格式,并在响应头中添加 X-Tracking-IDX-DateTime

代码文件 responses/json_response.py

import json
from datetime import datetime
from http import HTTPStatus
from typing import Any

from flask import Response, g, request


class JsonResponse(Response):
    def __init__(
        self,
        data: Any = None,
        code: HTTPStatus = HTTPStatus.OK,
        msg: str = "this is a json response",
    ):
        x_tracking_id = g.get("tracking_id", "")
        x_datetime = datetime.now().astimezone().isoformat(timespec="seconds")
        resp_headers = {
            "Content-Type": "application/json",
            "X-Tracking-ID": x_tracking_id,
            "X-DateTime": x_datetime,
        }
        try:
            resp = json.dumps(
                {
                    "code": code.value,
                    "msg": msg,
                    "data": data,
                },
                ensure_ascii=False,
                default=str,
            )
        except Exception as e:
            resp = json.dumps(
                {
                    "code": HTTPStatus.INTERNAL_SERVER_ERROR.value,
                    "msg": f"Response serialization error: {str(e)}",
                    "data": None,
                }
            )
        super().__init__(response=resp, status=code.value, headers=resp_headers)


class Success(JsonResponse):
    def __init__(self, data: Any = None, msg: str = ""):
        if not msg:
            msg = f"{request.method} {request.path} success"
        super().__init__(data=data, code=HTTPStatus.OK, msg=msg)


class Fail(JsonResponse):
    def __init__(self, msg: str = "", data: Any = None):
        if not msg:
            msg = f"{request.method} {request.path} failed"
        super().__init__(data=data, code=HTTPStatus.INTERNAL_SERVER_ERROR, msg=msg)


class ArgumentNotFound(JsonResponse):
    def __init__(self, msg: str = "", data: Any = None):
        if not msg:
            msg = f"{request.method} {request.path} argument not found"
        super().__init__(data=data, code=HTTPStatus.BAD_REQUEST, msg=msg)


class ArgumentInvalid(JsonResponse):
    def __init__(self, msg: str = "", data: Any = None):
        if not msg:
            msg = f"{request.method} {request.path} argument invalid"
        super().__init__(data=data, code=HTTPStatus.BAD_REQUEST, msg=msg)


class AuthFailed(JsonResponse):
    """HTTP 状态码: 401"""

    def __init__(self, msg: str = "", data: Any = None):
        if not msg:
            msg = f"{request.method} {request.path} auth failed"
        super().__init__(data=data, code=HTTPStatus.UNAUTHORIZED, msg=msg)


class ResourceConflict(JsonResponse):
    """HTTP 状态码: 409"""

    def __init__(self, msg: str = "", data: Any = None):
        if not msg:
            msg = f"{request.method} {request.path} resource conflict"
        super().__init__(data=data, code=HTTPStatus.CONFLICT, msg=msg)


class ResourceNotFound(JsonResponse):
    """HTTP 状态码: 404"""

    def __init__(self, msg: str = "", data: Any = None):
        if not msg:
            msg = f"{request.method} {request.path} resource not found"
        super().__init__(data=data, code=HTTPStatus.NOT_FOUND, msg=msg)


class ResourceForbidden(JsonResponse):
    """HTTP 状态码: 403"""

    def __init__(self, msg: str = "", data: Any = None):
        if not msg:
            msg = f"{request.method} {request.path} resource forbidden"
        super().__init__(data=data, code=HTTPStatus.FORBIDDEN, msg=msg)

代码文件 responses/__init__.py,方便其他模块调用。

from .json_response import (
    ArgumentInvalid,
    ArgumentNotFound,
    AuthFailed,
    Fail,
    JsonResponse,
    ResourceConflict,
    ResourceForbidden,
    ResourceNotFound,
    Success,
)

__all__ = [
    "JsonResponse",
    "Success",
    "Fail",
    "ArgumentNotFound",
    "ArgumentInvalid",
    "AuthFailed",
    "ResourceConflict",
    "ResourceNotFound",
    "ResourceForbidden",
]

编写视图函数

代码文件 apis/common/common.py。以下定义了 5 个路由,主要用于测试响应类是否正常返回 JSON 格式。

from datetime import datetime

from flask import Blueprint

from handles import user as user_handle
from pkgs.log import logger
from responses import Success

route = Blueprint("common_apis", __name__, url_prefix="/api")


@route.get("/health")
def health_check():
    # print(g.get("tracking_id", "no-tracking-id"))
    logger.info("Health check")
    return Success(data="OK")


@route.get("/users")
def get_users():
    users = user_handle.get_users()
    return Success(data=users)


@route.get("/names")
def get_names():
    names = ["Alice", "Bob", "Charlie"]
    return Success(data=names)


@route.get("/item")
def get_item():
    item = {"id": 101, "name": "Sample Item", "price": 29.99, "now": datetime.now()}
    return Success(data=item)


@route.get("/error")
def get_error():
    raise Exception("This is a test exception")

GET /api/users 调用了 handles/ 中的代码,模拟查询数据库。handles/user.py 中的代码如下:

import time
from typing import Any, Dict, List


def get_users() -> List[Dict[str, Any]]:
    # 模拟查询用户数据
    time.sleep(0.1)  # 模拟延迟
    users = [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]
    return users

代码文件 apis/common/__init__.py 中导入各个蓝图并统一暴露。由于示例代码只定义了一个蓝图,所以这里写得很简单。如果有多个蓝图,可以把蓝图都添加到一个列表中,在 Flask 应用中一次性遍历注册。

from .common import route
# from .common import route as common_route

# routes = [
#     common_route,
# ]

__all__ = ["route"]

代码文件 apis/__init__.py 中提供 Flask 应用的工厂函数。

import traceback

from flask import Flask

from apis.common import route as common_route
from middlewares import tracking_id_middleware
from responses import Fail, ResourceNotFound
from pkgs.log import logger



# 错误处理器
def error_handler_notfound(error):
    return ResourceNotFound()


def error_handler_generic(error):
    logger.error(traceback.format_exc())
    return Fail(data=str(error))



def create_app() -> Flask:
    app = Flask(__name__)

    # 注册中间件
    app = tracking_id_middleware(app)

    # 注册错误处理器
    app.errorhandler(Exception)(error_handler_generic)
    app.errorhandler(404)(error_handler_notfound)

    # 注册蓝图
    app.register_blueprint(common_route)

    return app

__all__ = [
    "create_app",
]

入口代码文件 main.py

from apis import create_app

app = create_app()

if __name__ == "__main__":
    app.run(host="127.0.0.1", port=8000, debug=False)

简单运行测试

  1. 启动应用
# 方式1, 直接启动, 用于简单测试
python main.py

# 方式2, 使用 gunicorn, 这是生产环境启动方式. 配置文件默认路径即 ./gunicorn.conf.py
gunicorn main:app
  1. curl 请求 /api/health。可以看到响应头中已经有了 X-Tracking-IDX-DateTime
$ curl -v http://127.0.0.1:8000/api/health
*   Trying 127.0.0.1:8000...
* Connected to 127.0.0.1 (127.0.0.1) port 8000
* using HTTP/1.x
> GET /api/health HTTP/1.1
> Host: 127.0.0.1:8000
> User-Agent: curl/8.14.1
> Accept: */*
>
* Request completely sent off
< HTTP/1.1 200 OK
< Server: gunicorn
< Date: Sat, 17 Jan 2026 08:41:07 GMT
< Connection: keep-alive
< Content-Type: application/json
< X-Tracking-ID: 1f0adb8d-9bee-49d4-873f-31aa1437da60
< X-DateTime: 2026-01-17T16:41:07+08:00
< Content-Length: 61
<
* Connection #0 to host 127.0.0.1 left intact
{"code": 200, "msg": "GET /api/health success", "data": "OK"}
  1. curl 请求 /api/users。手动指定请求头中的 X-Tracking-ID,响应时也会保持相同的 ID。
$ curl -v http://127.0.0.1:8000/api/users -H 'X-Tracking-ID:123456'
*   Trying 127.0.0.1:8000...
* Connected to 127.0.0.1 (127.0.0.1) port 8000
* using HTTP/1.x
> GET /api/users HTTP/1.1
> Host: 127.0.0.1:8000
> User-Agent: curl/8.14.1
> Accept: */*
> X-Tracking-ID:123456
>
* Request completely sent off
< HTTP/1.1 200 OK
< Server: gunicorn
< Date: Sat, 17 Jan 2026 08:44:37 GMT
< Connection: keep-alive
< Content-Type: application/json
< X-Tracking-ID: 123456
< X-DateTime: 2026-01-17T16:44:37+08:00
< Content-Length: 110
<
* Connection #0 to host 127.0.0.1 left intact
{"code": 200, "msg": "GET /api/users success", "data": [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]}

编写单元测试

使用 pytest 进行单元测试,这里只是一个简单的示例

配置 pytest

配置文件 pytest.ini

[pytest]
testpaths = "tests"
pythonpath = "."

测试代码

代码文件 tests/apis/test_common.py

from typing import Generator
from unittest.mock import MagicMock, patch

import pytest
from flask import Flask
from flask.testing import FlaskClient

from apis.common import route as common_route


@pytest.fixture
def app() -> Generator[Flask, None, None]:
    app = Flask(__name__)
    app.config.update(
        {
            "TESTING": True,
            "DEBUG": False,
        }
    )
    app.register_blueprint(common_route)
    yield app


@pytest.fixture
def client(app: Flask) -> FlaskClient:
    return app.test_client()


class TestGetHealth:
    def test_get_health_success(self, client: FlaskClient) -> None:
        resp = client.get("/api/health")
        assert resp.status_code == 200

        resp_headers = resp.headers
        assert resp_headers.get("Content-Type") == "application/json"
        assert "X-Tracking-ID" in resp_headers
        assert "X-DateTime" in resp_headers

        resp_body = resp.json
        assert resp_body == {
            "code": 200,
            "msg": "GET /api/health success",
            "data": "OK",
        }


class TestGetUsers:
    @patch("apis.common.common.user_handle.get_users")
    def test_get_users(self, mock_get_users: MagicMock, client: FlaskClient) -> None:
        # mock user.get_users() 的返回值
        mock_get_users.return_value = [
            {"id": 1, "name": "Alice123"},
            {"id": 2, "name": "Bob456"},
        ]

        # 发送请求
        resp = client.get("/api/users")
        assert resp.status_code == 200

        resp_headers = resp.headers
        assert resp_headers.get("Content-Type") == "application/json"
        assert "X-Tracking-ID" in resp_headers
        assert "X-DateTime" in resp_headers

        # resp_body = resp.json

        mock_get_users.assert_called_once()

执行测试

pytest -vv

配置 Gunicorn

代码文件 gunicorn.conf.py。简单配置了一些启动参数,以及请求日志的格式。

# Gunicorn 配置文件
from pathlib import Path
from multiprocessing import cpu_count
import gunicorn.glogging
from datetime import datetime

class CustomLogger(gunicorn.glogging.Logger):
    def atoms(self, resp, req, environ, request_time):
        """
        重写 atoms 方法来自定义日志占位符
        """
        # 获取默认的所有占位符数据
        atoms = super().atoms(resp, req, environ, request_time)
        
        # 自定义 't' (时间戳) 的格式
        now = datetime.now().astimezone()
        atoms['t'] = now.isoformat(timespec="seconds")
        
        return atoms
    

# 预加载应用代码
preload_app = True

# 工作进程数量:通常是 CPU 核心数的 2 倍加 1
# workers = int(cpu_count() * 2 + 1)
workers = 2

# 使用 gevent 异步 worker 类型,适合 I/O 密集型应用
# 注意:gevent worker 不使用 threads 参数,而是使用协程进行并发处理
worker_class = "gevent"

# 每个 gevent worker 可处理的最大并发连接数
worker_connections = 2000

# 绑定地址和端口
bind = "127.0.0.1:8000"

# 进程名称
proc_name = "flask-dev"

# PID 文件路径
pidfile = str(Path(__file__).parent / "tmp" / "gunicorn.pid")

logger_class = CustomLogger
access_log_format = (
    '{"@timestamp": "%(t)s", '
    '"remote_addr": "%(h)s", '
    '"protocol": "%(H)s", '
    '"host": "%({host}i)s", '
    '"request_method": "%(m)s", '
    '"request_path": "%(U)s", '
    '"status_code": %(s)s, '
    '"response_length": %(b)s, '
    '"referer": "%(f)s", '
    '"user_agent": "%(a)s", '
    '"x_tracking_id": "%({x-tracking-id}i)s", '
    '"request_time": %(L)s}'
)

# 访问日志路径
accesslog = str(Path(__file__).parent / "logs" / "access.log")

# 错误日志路径
errorlog = str(Path(__file__).parent / "logs" / "error.log")

# 日志级别
loglevel = "debug"

输出的日志格式。可以看到日志格式符合 JSON 规范,便于 Filebeat 收集后在 Kibana 上检索。

$ tail -n 1 logs/access.log | python3 -m json.tool
{
    "@timestamp": "2026-01-17T16:44:37+08:00",
    "remote_addr": "127.0.0.1",
    "protocol": "HTTP/1.1",
    "host": "127.0.0.1:8000",
    "request_method": "GET",
    "request_path": "/api/users",
    "status_code": 200,
    "response_length": 110,
    "referer": "-",
    "user_agent": "curl/8.14.1",
    "x_tracking_id": "123456",
    "request_time": 0.102042
}

补充

全局对象 g 的注意事项

  1. g 不是进程或线程共享的全局变量,请只在请求处理流程中使用 g
  2. 如果视图函数中启动了后台线程或异步任务,在子线程中直接访问 g 通常会报错或获取不到数据。这时建议显式传递数据。
  3. 不要在 g 中存储大文件或数据对象,否则会占用过高内存。
  4. g 不是 session
posted @ 2026-01-17 17:22  花酒锄作田  阅读(19)  评论(0)    收藏  举报