[python]Flask - Tracking ID的设计
前言
在实际业务中,根据 tracking_id 追溯一条请求的完整处理路径是比较常见的需求。借助 Flask 自带的全局对象 g 以及钩子函数,可以很容易地为每条请求添加 tracking_id,并在日志中自动记录。
主要内容:
- 如何为每条请求添加
tracking_id - 如何为日志自动添加
tracking_id记录 - 如何自定义响应类,实现统一的响应格式,并在响应头中添加
tracking_id - 视图函数单元测试示例
- Gunicorn 配置
项目结构
虽然内容看起来很多,但 tracking_id 的实现其实很简单。本文按照生产项目的规范组织了代码,添加了 Gunicorn 配置和单元测试代码,以及规范了日志格式和 JSON 响应格式。
├── apis
│ ├── common
│ │ ├── common.py
│ │ └── __init__.py
│ └── __init__.py
├── gunicorn.conf.py
├── handles
│ └── user.py
├── logs
│ ├── access.log
│ └── error.log
├── main.py
├── middlewares
│ ├── __init__.py
│ └── tracking_id.py
├── pkgs
│ └── log
│ ├── app_log.py
│ └── __init__.py
├── pyproject.toml
├── pytest.ini
├── README.md
├── responses
│ ├── __init__.py
│ └── json_response.py
├── tests
│ └── apis
│ └── test_common.py
├── tmp
│ └── gunicorn.pid
└── uv.lock
安装依赖
uv add flask
uv add gunicorn gevent # 生产环境部署一般依赖这两个
uv add --dev pytest # 测试库
实现添加 tracking_id 的中间件
代码文件:middlewares/tracking_id.py
from uuid import uuid4
from flask import Flask, Response, g, request
def tracking_id_middleware(app: Flask):
"""
跟踪 ID 中间件
为每个请求生成或获取跟踪 ID,用于追踪请求链路
"""
@app.before_request
def tracking_id_before_request():
"""
请求前处理函数
检查请求头中是否包含 X-Tracking-ID,如果没有则生成一个新的 UUID 作为跟踪 ID
并将其存储到 Flask 的全局对象 g 中,供后续处理使用
"""
# 从请求头中获取 X-Tracking-ID
tracking_id = request.headers.get("X-Tracking-ID")
if not tracking_id:
# 如果请求头中没有 X-Tracking-ID,则生成一个新的 UUID
tracking_id = str(uuid4())
# 将跟踪 ID 存储到 Flask 的全局对象 g 中,供后续处理使用
g.tracking_id = tracking_id
@app.after_request
def tracking_id_after_request(response: Response):
"""
请求后处理函数
将跟踪 ID 添加到响应头中,以便客户端知道本次请求的跟踪 ID
"""
# 检查响应头中是否已经有 X-Tracking-ID
tracking_id = response.headers.get("X-Tracking-ID", "")
if not tracking_id:
# 如果响应头中没有 X-Tracking-ID,则从全局对象 g 中获取
tracking_id = g.get("tracking_id", "")
# 将跟踪 ID 添加到响应头中
response.headers["X-Tracking-ID"] = tracking_id
return response
# 返回应用实例
return app
代码文件 middlewares/__init__.py,方便其他模块导入
from .tracking_id import tracking_id_middleware
__all__ = [
"tracking_id_middleware",
]
日志模块 - 自动记录 tracking_id
实现一个简单的输出到控制台的日志模块,日志格式为 JSON,自动添加 tracking_id 到日志中,避免手动在 logger.info() 这类方法中传入 tracking_id。
代码文件 pkgs/log/app_log.py
import json
import logging
import sys
from flask import g
class JSONFormatter(logging.Formatter):
"""日志格式化器,输出 JSON 格式的日志。"""
def format(self, record: logging.LogRecord) -> str:
log_record = {
"@timestamp": self.formatTime(record, "%Y-%m-%dT%H:%M:%S%z"),
"level": record.levelname,
"name": record.name,
# "processName": record.processName, # 如需记录进程名可取消注释
"tracking_id": getattr(record, "tracking_id", None),
"loc": "%s:%d" % (record.filename, record.lineno),
"func": record.funcName,
"message": record.getMessage(),
}
return json.dumps(log_record, ensure_ascii=False, default=str)
class TrackingIDFilter(logging.Filter):
"""日志过滤器,为日志记录添加 tracking_id。"""
def filter(self, record):
record.tracking_id = g.get("tracking_id", None)
return True
def _setup_console_handler(level: int) -> logging.StreamHandler:
"""设置控制台日志处理器。
Args:
level (int): 日志级别。
"""
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(level)
handler.setFormatter(JSONFormatter())
return handler
def setup_app_logger(level: int = logging.INFO, name: str = "app") -> logging.Logger:
logger = logging.getLogger(name)
if logger.hasHandlers():
return logger
logger.setLevel(level)
logger.propagate = False
logger.addHandler(_setup_console_handler(level))
logger.addFilter(TrackingIDFilter())
return logger
在 pkgs/log/__init__.py 中初始化 logger,实现单例调用。
from .app_log import setup_app_logger
logger = setup_app_logger()
__all__ = ["logger"]
自定义响应类
规范 JSON 类型的响应格式,并在响应头中添加 X-Tracking-ID 和 X-DateTime。
代码文件 responses/json_response.py
import json
from datetime import datetime
from http import HTTPStatus
from typing import Any
from flask import Response, g, request
class JsonResponse(Response):
def __init__(
self,
data: Any = None,
code: HTTPStatus = HTTPStatus.OK,
msg: str = "this is a json response",
):
x_tracking_id = g.get("tracking_id", "")
x_datetime = datetime.now().astimezone().isoformat(timespec="seconds")
resp_headers = {
"Content-Type": "application/json",
"X-Tracking-ID": x_tracking_id,
"X-DateTime": x_datetime,
}
try:
resp = json.dumps(
{
"code": code.value,
"msg": msg,
"data": data,
},
ensure_ascii=False,
default=str,
)
except Exception as e:
resp = json.dumps(
{
"code": HTTPStatus.INTERNAL_SERVER_ERROR.value,
"msg": f"Response serialization error: {str(e)}",
"data": None,
}
)
super().__init__(response=resp, status=code.value, headers=resp_headers)
class Success(JsonResponse):
def __init__(self, data: Any = None, msg: str = ""):
if not msg:
msg = f"{request.method} {request.path} success"
super().__init__(data=data, code=HTTPStatus.OK, msg=msg)
class Fail(JsonResponse):
def __init__(self, msg: str = "", data: Any = None):
if not msg:
msg = f"{request.method} {request.path} failed"
super().__init__(data=data, code=HTTPStatus.INTERNAL_SERVER_ERROR, msg=msg)
class ArgumentNotFound(JsonResponse):
def __init__(self, msg: str = "", data: Any = None):
if not msg:
msg = f"{request.method} {request.path} argument not found"
super().__init__(data=data, code=HTTPStatus.BAD_REQUEST, msg=msg)
class ArgumentInvalid(JsonResponse):
def __init__(self, msg: str = "", data: Any = None):
if not msg:
msg = f"{request.method} {request.path} argument invalid"
super().__init__(data=data, code=HTTPStatus.BAD_REQUEST, msg=msg)
class AuthFailed(JsonResponse):
"""HTTP 状态码: 401"""
def __init__(self, msg: str = "", data: Any = None):
if not msg:
msg = f"{request.method} {request.path} auth failed"
super().__init__(data=data, code=HTTPStatus.UNAUTHORIZED, msg=msg)
class ResourceConflict(JsonResponse):
"""HTTP 状态码: 409"""
def __init__(self, msg: str = "", data: Any = None):
if not msg:
msg = f"{request.method} {request.path} resource conflict"
super().__init__(data=data, code=HTTPStatus.CONFLICT, msg=msg)
class ResourceNotFound(JsonResponse):
"""HTTP 状态码: 404"""
def __init__(self, msg: str = "", data: Any = None):
if not msg:
msg = f"{request.method} {request.path} resource not found"
super().__init__(data=data, code=HTTPStatus.NOT_FOUND, msg=msg)
class ResourceForbidden(JsonResponse):
"""HTTP 状态码: 403"""
def __init__(self, msg: str = "", data: Any = None):
if not msg:
msg = f"{request.method} {request.path} resource forbidden"
super().__init__(data=data, code=HTTPStatus.FORBIDDEN, msg=msg)
代码文件 responses/__init__.py,方便其他模块调用。
from .json_response import (
ArgumentInvalid,
ArgumentNotFound,
AuthFailed,
Fail,
JsonResponse,
ResourceConflict,
ResourceForbidden,
ResourceNotFound,
Success,
)
__all__ = [
"JsonResponse",
"Success",
"Fail",
"ArgumentNotFound",
"ArgumentInvalid",
"AuthFailed",
"ResourceConflict",
"ResourceNotFound",
"ResourceForbidden",
]
编写视图函数
代码文件 apis/common/common.py。以下定义了 5 个路由,主要用于测试响应类是否正常返回 JSON 格式。
from datetime import datetime
from flask import Blueprint
from handles import user as user_handle
from pkgs.log import logger
from responses import Success
route = Blueprint("common_apis", __name__, url_prefix="/api")
@route.get("/health")
def health_check():
# print(g.get("tracking_id", "no-tracking-id"))
logger.info("Health check")
return Success(data="OK")
@route.get("/users")
def get_users():
users = user_handle.get_users()
return Success(data=users)
@route.get("/names")
def get_names():
names = ["Alice", "Bob", "Charlie"]
return Success(data=names)
@route.get("/item")
def get_item():
item = {"id": 101, "name": "Sample Item", "price": 29.99, "now": datetime.now()}
return Success(data=item)
@route.get("/error")
def get_error():
raise Exception("This is a test exception")
GET /api/users 调用了 handles/ 中的代码,模拟查询数据库。handles/user.py 中的代码如下:
import time
from typing import Any, Dict, List
def get_users() -> List[Dict[str, Any]]:
# 模拟查询用户数据
time.sleep(0.1) # 模拟延迟
users = [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]
return users
代码文件 apis/common/__init__.py 中导入各个蓝图并统一暴露。由于示例代码只定义了一个蓝图,所以这里写得很简单。如果有多个蓝图,可以把蓝图都添加到一个列表中,在 Flask 应用中一次性遍历注册。
from .common import route
# from .common import route as common_route
# routes = [
# common_route,
# ]
__all__ = ["route"]
代码文件 apis/__init__.py 中提供 Flask 应用的工厂函数。
import traceback
from flask import Flask
from apis.common import route as common_route
from middlewares import tracking_id_middleware
from responses import Fail, ResourceNotFound
from pkgs.log import logger
# 错误处理器
def error_handler_notfound(error):
return ResourceNotFound()
def error_handler_generic(error):
logger.error(traceback.format_exc())
return Fail(data=str(error))
def create_app() -> Flask:
app = Flask(__name__)
# 注册中间件
app = tracking_id_middleware(app)
# 注册错误处理器
app.errorhandler(Exception)(error_handler_generic)
app.errorhandler(404)(error_handler_notfound)
# 注册蓝图
app.register_blueprint(common_route)
return app
__all__ = [
"create_app",
]
入口代码文件 main.py
from apis import create_app
app = create_app()
if __name__ == "__main__":
app.run(host="127.0.0.1", port=8000, debug=False)
简单运行测试
- 启动应用
# 方式1, 直接启动, 用于简单测试
python main.py
# 方式2, 使用 gunicorn, 这是生产环境启动方式. 配置文件默认路径即 ./gunicorn.conf.py
gunicorn main:app
- curl 请求
/api/health。可以看到响应头中已经有了X-Tracking-ID和X-DateTime
$ curl -v http://127.0.0.1:8000/api/health
* Trying 127.0.0.1:8000...
* Connected to 127.0.0.1 (127.0.0.1) port 8000
* using HTTP/1.x
> GET /api/health HTTP/1.1
> Host: 127.0.0.1:8000
> User-Agent: curl/8.14.1
> Accept: */*
>
* Request completely sent off
< HTTP/1.1 200 OK
< Server: gunicorn
< Date: Sat, 17 Jan 2026 08:41:07 GMT
< Connection: keep-alive
< Content-Type: application/json
< X-Tracking-ID: 1f0adb8d-9bee-49d4-873f-31aa1437da60
< X-DateTime: 2026-01-17T16:41:07+08:00
< Content-Length: 61
<
* Connection #0 to host 127.0.0.1 left intact
{"code": 200, "msg": "GET /api/health success", "data": "OK"}
- curl 请求
/api/users。手动指定请求头中的X-Tracking-ID,响应时也会保持相同的 ID。
$ curl -v http://127.0.0.1:8000/api/users -H 'X-Tracking-ID:123456'
* Trying 127.0.0.1:8000...
* Connected to 127.0.0.1 (127.0.0.1) port 8000
* using HTTP/1.x
> GET /api/users HTTP/1.1
> Host: 127.0.0.1:8000
> User-Agent: curl/8.14.1
> Accept: */*
> X-Tracking-ID:123456
>
* Request completely sent off
< HTTP/1.1 200 OK
< Server: gunicorn
< Date: Sat, 17 Jan 2026 08:44:37 GMT
< Connection: keep-alive
< Content-Type: application/json
< X-Tracking-ID: 123456
< X-DateTime: 2026-01-17T16:44:37+08:00
< Content-Length: 110
<
* Connection #0 to host 127.0.0.1 left intact
{"code": 200, "msg": "GET /api/users success", "data": [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]}
编写单元测试
使用 pytest 进行单元测试,这里只是一个简单的示例
配置 pytest
配置文件 pytest.ini
[pytest]
testpaths = "tests"
pythonpath = "."
测试代码
代码文件 tests/apis/test_common.py
from typing import Generator
from unittest.mock import MagicMock, patch
import pytest
from flask import Flask
from flask.testing import FlaskClient
from apis.common import route as common_route
@pytest.fixture
def app() -> Generator[Flask, None, None]:
app = Flask(__name__)
app.config.update(
{
"TESTING": True,
"DEBUG": False,
}
)
app.register_blueprint(common_route)
yield app
@pytest.fixture
def client(app: Flask) -> FlaskClient:
return app.test_client()
class TestGetHealth:
def test_get_health_success(self, client: FlaskClient) -> None:
resp = client.get("/api/health")
assert resp.status_code == 200
resp_headers = resp.headers
assert resp_headers.get("Content-Type") == "application/json"
assert "X-Tracking-ID" in resp_headers
assert "X-DateTime" in resp_headers
resp_body = resp.json
assert resp_body == {
"code": 200,
"msg": "GET /api/health success",
"data": "OK",
}
class TestGetUsers:
@patch("apis.common.common.user_handle.get_users")
def test_get_users(self, mock_get_users: MagicMock, client: FlaskClient) -> None:
# mock user.get_users() 的返回值
mock_get_users.return_value = [
{"id": 1, "name": "Alice123"},
{"id": 2, "name": "Bob456"},
]
# 发送请求
resp = client.get("/api/users")
assert resp.status_code == 200
resp_headers = resp.headers
assert resp_headers.get("Content-Type") == "application/json"
assert "X-Tracking-ID" in resp_headers
assert "X-DateTime" in resp_headers
# resp_body = resp.json
mock_get_users.assert_called_once()
执行测试
pytest -vv
配置 Gunicorn
代码文件 gunicorn.conf.py。简单配置了一些启动参数,以及请求日志的格式。
# Gunicorn 配置文件
from pathlib import Path
from multiprocessing import cpu_count
import gunicorn.glogging
from datetime import datetime
class CustomLogger(gunicorn.glogging.Logger):
def atoms(self, resp, req, environ, request_time):
"""
重写 atoms 方法来自定义日志占位符
"""
# 获取默认的所有占位符数据
atoms = super().atoms(resp, req, environ, request_time)
# 自定义 't' (时间戳) 的格式
now = datetime.now().astimezone()
atoms['t'] = now.isoformat(timespec="seconds")
return atoms
# 预加载应用代码
preload_app = True
# 工作进程数量:通常是 CPU 核心数的 2 倍加 1
# workers = int(cpu_count() * 2 + 1)
workers = 2
# 使用 gevent 异步 worker 类型,适合 I/O 密集型应用
# 注意:gevent worker 不使用 threads 参数,而是使用协程进行并发处理
worker_class = "gevent"
# 每个 gevent worker 可处理的最大并发连接数
worker_connections = 2000
# 绑定地址和端口
bind = "127.0.0.1:8000"
# 进程名称
proc_name = "flask-dev"
# PID 文件路径
pidfile = str(Path(__file__).parent / "tmp" / "gunicorn.pid")
logger_class = CustomLogger
access_log_format = (
'{"@timestamp": "%(t)s", '
'"remote_addr": "%(h)s", '
'"protocol": "%(H)s", '
'"host": "%({host}i)s", '
'"request_method": "%(m)s", '
'"request_path": "%(U)s", '
'"status_code": %(s)s, '
'"response_length": %(b)s, '
'"referer": "%(f)s", '
'"user_agent": "%(a)s", '
'"x_tracking_id": "%({x-tracking-id}i)s", '
'"request_time": %(L)s}'
)
# 访问日志路径
accesslog = str(Path(__file__).parent / "logs" / "access.log")
# 错误日志路径
errorlog = str(Path(__file__).parent / "logs" / "error.log")
# 日志级别
loglevel = "debug"
输出的日志格式。可以看到日志格式符合 JSON 规范,便于 Filebeat 收集后在 Kibana 上检索。
$ tail -n 1 logs/access.log | python3 -m json.tool
{
"@timestamp": "2026-01-17T16:44:37+08:00",
"remote_addr": "127.0.0.1",
"protocol": "HTTP/1.1",
"host": "127.0.0.1:8000",
"request_method": "GET",
"request_path": "/api/users",
"status_code": 200,
"response_length": 110,
"referer": "-",
"user_agent": "curl/8.14.1",
"x_tracking_id": "123456",
"request_time": 0.102042
}
补充
全局对象 g 的注意事项
g不是进程或线程共享的全局变量,请只在请求处理流程中使用g。- 如果视图函数中启动了后台线程或异步任务,在子线程中直接访问
g通常会报错或获取不到数据。这时建议显式传递数据。 - 不要在
g中存储大文件或数据对象,否则会占用过高内存。 g不是session。
本文来自博客园,作者:花酒锄作田,转载请注明原文链接:https://www.cnblogs.com/XY-Heruo/p/19496753

浙公网安备 33010602011771号