Java Arrays.sort部分源码分析(1)
Java中的Arrays.sort提供了对Java所有类型的排序,其中有基本类型(8种)和Object类型。
基本类型:快速排序
Object类型:归并排序
但是sort的排序不止这么两种,还有其他的排序在里面比如有(插入排序(优化过的))
因为对象的排序要求是稳定,所以不能使用快速排序,而且快速排序的最坏的时间复杂度是O(n^2),而优化后的归并排序是 nlog(n)
但是sort排序前会先进行一次判断,如果数组长度<286,就不会使用快速排序,而使用插入排序。
1 /**
2 * If the length of an array to be sorted is less than this
3 * constant, Quicksort is used in preference to merge sort.
4 */
5 private static final int QUICKSORT_THRESHOLD = 286;
优化后的快速排序
static void sort(int[] a, int left, int right,
int[] work, int workBase, int workLen) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
/*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left;
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
return;
}
// Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1);
// Use or create temporary array b for merging
int[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new int[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
} else {
b = work;
ao = 0;
bo = workBase - left;
}
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
} else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
int o = ao; ao = bo; bo = o;
}
}
插入排序
1 @a:是一个待排序数组
2 @left:是数组左边第一个元素的下标
3 @right:是数组右边的最后一个元素下标
4
5 private static void sort(int[] a, int left, int right, boolean leftmost) {
6 int length = right - left + 1;
7
8 // Use insertion sort on tiny arrays
9 if (length < INSERTION_SORT_THRESHOLD) { // INSERTION_SORT_THRESHOLD = 47
10
11 if (leftmost) {
12 /*
13 * Traditional (without sentinel) insertion sort,
14 * optimized for server VM, is used in case of
15 * the leftmost part.
16 */
17 for (int i = left, j = i; i < right; j = ++i) {
18 int ai = a[i + 1];
19 while (ai < a[j]) {
20 a[j + 1] = a[j];
21 if (j-- == left) {
22 break;
23 }
24 }
25 a[j + 1] = ai;
26 }
27 } else {
28 /*
29 * Skip the longest ascending sequence.
30 */
31 do {
32 if (left >= right) {
33 return;
34 }
35 } while (a[++left] >= a[left - 1]);
36
37 /*
38 * Every element from adjoining part plays the role
39 * of sentinel, therefore this allows us to avoid the
40 * left range check on each iteration. Moreover, we use
41 * the more optimized algorithm, so called pair insertion
42 * sort, which is faster (in the context of Quicksort)
43 * than traditional implementation of insertion sort.
44 */
45 for (int k = left; ++left <= right; k = ++left) {
46 int a1 = a[k], a2 = a[left];
47
48 if (a1 < a2) {
49 a2 = a1; a1 = a[left];
50 }
51 while (a1 < a[--k]) {
52 a[k + 2] = a[k];
53 }
54 a[++k + 1] = a1;
55
56 while (a2 < a[--k]) {
57 a[k + 1] = a[k];
58 }
59 a[k + 1] = a2;
60 }
61 int last = a[right];
62
63 while (last < a[--right]) {
64 a[right + 1] = a[right];
65 }
66 a[right + 1] = last;
67 }
68 return;
69 }
浙公网安备 33010602011771号