2080. 区间内查询数字的频率

题目链接 2080. 区间内查询数字的频率
思路 二分法(upper_bound - lower_bound)
题解链接 简洁写法:统计位置+二分查找(Python/Java/C++/Go/JS/Rust)
关键点 预先处理得到每个值所处位置的列表
时间复杂度 \(O(n + m \log n)\)
空间复杂度 \(O(n)\)

代码实现:

class RangeFreqQuery:

    def __init__(self, arr: List[int]):
        positions = defaultdict(list)
        for i, v in enumerate(arr):
            positions[v].append(i)
        self.positions = positions

    def query(self, L: int, R: int, value: int) -> int:
        positions = self.positions[value]
        n = len(positions)

        def upper_bound():
            left, right = -1, n
            while left + 1 < right:
                mid = (left+right) // 2
                if positions[mid] > R:
                    right = mid
                else:
                    left = mid
            return right
        
        def lower_bound():
            left, right = -1, n
            while left + 1 < right:
                mid = (left+right) // 2
                if positions[mid] < L:
                    left = mid
                else:
                    right = mid
            return right
        
        return upper_bound() - lower_bound()
Python-官方库
class RangeFreqQuery:

    def __init__(self, arr: List[int]):
        positions = defaultdict(list)
        for i, v in enumerate(arr):
            positions[v].append(i)
        self.positions = positions

    def query(self, L: int, R: int, value: int) -> int:
        positions = self.positions[value]
        return bisect_right(positions, R) - bisect_left(positions, L)
posted @ 2024-09-09 23:37  WrRan  阅读(30)  评论(0)    收藏  举报