Problem

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:

  1. 插入x数
  2. 删除x数(若有多个相同的数,因只删除一个)
  3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
  4. 查询排名为x的数
  5. 求x的前驱(前驱定义为小于x,且最大的数)
  6. 求x的后继(后继定义为大于x,且最小的数)

Solution

Treap模板题:
Treap为一种节点的优先级满足堆性质的二叉搜索树。
非旋转Treap:
代码较短,常数较Splay较小,比旋转Treap稍大。但因为不是旋转的,所以支持区间操作和可持久化。
最主要的操作为Merge,Split
建树方法参照笛卡尔树的建树方法。
推荐网站:http://memphis.is-programmer.com/posts/46317.html
旋转Treap:
常数十分的小,非常的好用,但不支持区间操作和可持久化。
主要操作为单旋:左旋和右旋

Notice

还不够熟练,很容易打错

Code

非旋转Treap

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define pairint pair<int, int>
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 100000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point = 0, root, a[N + 5];
struct node
{
    int Size[N + 5], Val[N + 5], Level[N + 5], Son[2][N + 5];
    inline void up(int u)
    {
        Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + 1;
    }
    int Newnode(int v)
    {
        int u = ++point;
        Val[u] = v, Level[u] = rand();
        Son[0][u] = Son[1][u] = 0, Size[u] = 1;
        return u;
    }
    int Merge(int X, int Y)
    {
        if (X * Y == 0) return X + Y;
        if (Level[X] < Level[Y])
        {
            Son[1][X] = Merge(Son[1][X], Y);
            up(X); return X;
        }
        else
        {
            Son[0][Y] = Merge(X, Son[0][Y]);
            up(Y); return Y;
        }
    }
    void Split(int u, int t, int &x, int &y)
    {
        if (!u)
		{
			x = y = 0;
			return;
		}
        if (Val[u] <= t) x = u, Split(Son[1][u], t, Son[1][u], y);
        else y = u, Split(Son[0][u], t, x, Son[0][u]);
        up(u);
    }
    void Build(int l, int r)
    {
        int last, u, s[N + 5], top = 0;
        rep(i, l, r)
        {
            int u = Newnode(a[i]);
            last = 0;
            while (top && Level[s[top]] < Level[u])
            {
                up(s[top]);
                last = s[top];
                s[top--] = 0;
            }
            if (top) Son[1][s[top]] = u;
            Son[0][u] = last;
            s[++top] = u;
        }
        while (top) up(s[top--]);
        root = s[1];
    }
    int Find_rank(int v)
    {
        int x, y, t;
    	Split(root, v - 1, x, y);
    	t = Size[x];
    	root = Merge(x, y);
    	return t + 1;
    }
    int Find_num(int u, int v)
    {
        if (!u) return 0;
        if (v <= Size[Son[0][u]]) return Find_num(Son[0][u], v);
        else if (v <= Size[Son[0][u]] + 1) return u;
        else return Find_num(Son[1][u], v - Size[Son[0][u]] - 1);
    }
    void Insert(int v)
    {
    	int t = Newnode(v), x, y;
        Split(root, v, x, y);
    	root = Merge(Merge(x, t), y);
    }
    void Delete(int v)
    {
        int x, y, z;
        Split(root, v, x, z), Split(x, v - 1, x, y);
        root = Merge(Merge(x, Merge(Son[0][y], Son[1][y])), z);
    }
}Treap;
int sqz()
{
    int n = read(), x = 0, y = 0;
    while (n--)
    {
        int op = read(), t = read();
        switch (op)
        {
            case 1: Treap.Insert(t); break;
            case 2: Treap.Delete(t); break;
            case 3: printf("%d\n", Treap.Find_rank(t)); break;
            case 4: printf("%d\n", Treap.Val[Treap.Find_num(root, t)]); break;
            case 5: Treap.Split(root, t - 1, x, y);
					printf("%d\n", Treap.Val[Treap.Find_num(x, Treap.Size[x])]);
					root = Treap.Merge(x, y); break;
            case 6: Treap.Split(root, t, x, y);
					printf("%d\n", Treap.Val[Treap.Find_num(y, 1)]);
					root = Treap.Merge(x, y); break;
        }
    }
    return 0;
}

旋转Treap

#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 100000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point = 0, pre, suf, root;
struct node
{
	int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5], Num[N + 5];
	inline void up(int u)
	{
		Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + Num[u];
	}
	inline void Newnode(int &u, int v)
	{
		u = ++point;
		Level[u] = rand(), Val[u] = v;
		Size[u] = Num[u] = 1, Son[0][u] = Son[1][u] = 0;
	}
	inline void Lturn(int &x)
	{
		int y = Son[1][x]; Son[1][x] = Son[0][y], Son[0][y] = x;
		Size[y] = Size[x]; up(x); x = y;
	}
	inline void Rturn(int &x)
	{
		int y = Son[0][x]; Son[0][x] = Son[1][y], Son[1][y] = x;
		Size[y] = Size[x]; up(x); x = y;
	}
	
	void Insert(int &u, int t)
	{
		if (u == 0)
		{
			Newnode(u, t);
			return;
		}
		Size[u]++;
		if (t == Val[u]) Num[u]++;
		else if (t < Val[u])
		{
			Insert(Son[0][u], t);
			if (Level[Son[0][u]] < Level[u]) Rturn(u);
		}
		else if (t > Val[u])
		{
			Insert(Son[1][u], t);
			if (Level[Son[1][u]] < Level[u]) Lturn(u);
		}
	}
	void Delete(int &u, int t)
	{
		if (!u) return;
		if (Val[u] == t)
		{
			if (Num[u] > 1)
			{
				Num[u]--, Size[u]--;
				return;
			}
			if (Son[0][u] * Son[1][u] == 0) u = Son[0][u] + Son[1][u];
			else if (Level[Son[0][u]] < Level[Son[1][u]]) Rturn(u), Delete(u, t);
			else Lturn(u), Delete(u, t);
		}
		else if (t < Val[u]) Size[u]--, Delete(Son[0][u], t);
		else Size[u]--, Delete(Son[1][u], t);
	}
	
	int Find_rank(int u, int t)
	{
		if (!u) return 0;
		if (Val[u] == t) return Size[Son[0][u]] + 1;
		else if (t < Val[u]) return Find_rank(Son[0][u], t);
		else return Size[Son[0][u]] + Num[u] + Find_rank(Son[1][u], t);
	}
	int Find_num(int u, int t)
	{
		if (!u) return 0;
		if (t <= Size[Son[0][u]]) return Find_num(Son[0][u], t);
		else if (t <= Size[Son[0][u]] + Num[u]) return Val[u];
		else return Find_num(Son[1][u], t - Size[Son[0][u]] - Num[u]);
	}
	void Find_pre(int u, int t)
	{
		if (!u) return;
		if (t > Val[u])
		{
			pre = u;
			Find_pre(Son[1][u], t);
		}
		else Find_pre(Son[0][u], t);
	}
	void Find_suf(int u, int t)
	{
		if (!u) return;
		if (t < Val[u])
		{
			suf = u;
			Find_suf(Son[0][u], t);
		}
		else Find_suf(Son[1][u], t);
	}
}Treap;
int sqz()
{
	int n = read();
	while (n--)
	{
		int op = read(), x = read();
		switch (op)
		{
			case 1: Treap.Insert(root, x); break;
			case 2: Treap.Delete(root, x); break;
			case 3: printf("%d\n", Treap.Find_rank(root, x)); break;
			case 4: printf("%d\n", Treap.Find_num(root, x)); break;
			case 5: pre = 0, Treap.Find_pre(root, x); printf("%d\n", Treap.Val[pre]); break;
			case 6: suf = 0, Treap.Find_suf(root, x); printf("%d\n", Treap.Val[suf]); break;
		}
	}
}
posted on 2017-10-10 00:13  WizardCowboy  阅读(142)  评论(0编辑  收藏  举报