# Problem

1. 插入x数
2. 删除x数(若有多个相同的数，因只删除一个)
3. 查询x数的排名(若有多个相同的数，因输出最小的排名)
4. 查询排名为x的数
5. 求x的前驱(前驱定义为小于x，且最大的数)
6. 求x的后继(后继定义为大于x，且最小的数)

Rotate旋转操作
Splay伸展操作

# Code

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 100000;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point = 0, root, pre, suf, ans;
struct node
{
int val[N + 5], count[N + 5], num[N + 5], son[2][N + 5], parent[N + 5];
inline void up(int u)
{
count[u] = count[son[0][u]] + count[son[1][u]] + num[u];
}

void Rotate(int x, int &rt)
{
int y = parent[x], z = parent[y];
int l = (son[1][y] == x), r = 1 - l;
if (y == rt) rt = x;
else if (son[0][z] == y) son[0][z] = x;
else son[1][z] = x;
parent[x] = z;
parent[son[r][x]] = y, son[l][y] = son[r][x];
parent[y] = x, son[r][x] = y;
up(y);
up(x);
}

void Splay(int x, int &rt)
{
while (x != rt)
{
int y = parent[x], z = parent[y];
if (y != rt)
{
if ((son[0][z] == y) ^ (son[0][y] == x))
Rotate(x, rt);
else Rotate(y, rt);
}
Rotate(x, rt);
}
}

void Insert(int &u, int x, int last)
{
if (u == 0)
{
u = ++point;
val[u] = x, parent[u] = last, num[u] = count[u] = 1;
Splay(u, root);
}
else
{
if (x > val[u]) Insert(son[1][u], x, u);
else if (x < val[u]) Insert(son[0][u], x, u);
else if (x == val[u]) num[u]++, count[u]++, Splay(u, root);
}
}

void Delete(int x)
{
Splay(x, root);
if (num[x] > 1)
{
num[x]--, count[x]--;
return;
}
if (son[0][x] * son[1][x] == 0) root = son[0][x] + son[1][x];
else
{
int t = son[1][x];
while (son[0][t] != 0) t = son[0][t];
Splay(t, root);
son[0][t] = son[0][x], parent[son[0][x]] = t;
up(t);
}
parent[root] = 0;
}

void Find_pre(int u, int x)
{
if (u == 0) return;
if (x > val[u])
{
pre = u;
Find_pre(son[1][u], x);
ans += count[son[0][u]] + num[u];
}
else Find_pre(son[0][u], x);
}

void Find_suf(int u,int x)
{
if (u == 0) return;
if (x < val[u])
{
suf = u;
Find_suf(son[0][u], x);
}
else Find_suf(son[1][u], x);
}

int Find_num(int u, int x)
{
if (x <= count[son[0][u]]) return Find_num(son[0][u], x);
if (x > count[son[0][u]] + num[u]) return Find_num(son[1][u], x - count[son[0][u]] - num[u]);
return val[u];
}

int Find_rank(int x)
{
ans = 0;
Find_pre(root, x);
return ans + 1;
}

int Find_id(int u, int x)
{
if (x == val[u]) return u;
if (x > val[u]) return Find_id(son[1][u], x);
if (x < val[u]) return Find_id(son[0][u], x);
}
}splay_tree;
int sqz()
{
root = 0;
rep(i, 1, n)
{
switch (op)
{
case 1:
{
splay_tree.Insert(root, t, 0);
break;
}
case 2:
{
int x = splay_tree.Find_id(root, t);
splay_tree.Delete(x);
break;
}
case 3:
{
printf("%d\n", splay_tree.Find_rank(t));
break;
}
case 4:
{
printf("%d\n", splay_tree.Find_num(root, t));
break;
}
case 5:
{
splay_tree.Find_pre(root, t);
printf("%d\n", splay_tree.val[pre]);
break;
}
case 6:
{
splay_tree.Find_suf(root, t);
printf("%d\n", splay_tree.val[suf]);
break;
}
}
}
return 0;
}

posted on 2017-09-29 20:25  WizardCowboy  阅读(133)  评论(0编辑  收藏  举报