2019山东省赛
B-Flipping Game
题意:n个灯泡状态只有1、0,操作会使0变1,1变0,每次必须操作k个灯泡(不能重复操作一个灯泡),求m轮操作后有多少种从初始状态到结束状态的方法
思路:动态规划,第一维表示第x轮操作,第二维表示有y个和结束状态相同的灯泡,难点在于状态转移方程的推导
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int maxn = 105 + 5;
const double eps = 1e-9;
int mod = 998244353;
ll C[maxn][maxn];
ll dp[maxn][maxn];
int main() {
C[1][0] = C[1][1] = 1;
for (int i = 0; i < maxn; i++)
C[i][0] = 1;
for (int i = 1; i < maxn; i++)
C[i][i] = 1;
for (int i = 2; i < maxn; i++)
for (int j = 1; j < i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
int t;
cin >> t;
while (t--) {
int n, k, m;
cin >> n >> k >> m;
memset(dp, 0, sizeof(dp));
string str1, str2;
cin >> str1 >> str2;
int tmp = 0;
for (int i = 0; i < n; i++)
tmp += str1[i] == str2[i];
dp[0][tmp] = 1;
for (int i = 1; i <= k; i++)
for (int j = 0; j <= m; j++)
for (int p = 0; p <= n; p++) {
if (p - j >= 0 && (n - p) >= (m - j))
dp[i][p - j + m - j] =
(dp[i][p - j + m - j] + ((dp[i - 1][p] * C[p][j]) % mod * C[n - p][m - j]) % mod) % mod;
}
cout << dp[k][n] << endl;
}
return 0;
}

浙公网安备 33010602011771号