关于可重入函数(可再入函数)和模拟堆栈(仿真堆栈)

作者:xzp21st 邮箱: tyter1223@163.com 撰文辛苦,转载请注明作者及出处

关键字:keilc51,模拟堆栈,可重入函数调用,参数传递,C?XBP,C?ADDXBP

摘要:本文较详细的介绍了keilc51可再入函数和模拟堆栈的一些概念和实现原理,通过一个简单的程序来剖析keilc51在大存储模式下可重入函数的调用过程,希望能为keilc51和在51系列单片机上移植嵌入式实时操作系统的初学者提供一些帮助。

 

关于可重入函数(可再入函数)和模拟堆栈(仿真堆栈)

“可重入函数可以被一个以上的任务调用,而不必担心数据被破坏。可重入函数任何时候都可以被中断,一段时间以后又可以运行,而相应的数据不会丢失。”(摘自嵌入式实时操作系统uC/OS-II)

在理解上述概念之前,必须先说一下keilc51的“覆盖技术”。(采用该技术的原因请看附录中一网友的解释)

(1)局部变量存储在全局RAM空间(不考虑扩展外部存储器的情况);

(2)在编译链接时,即已经完成局部变量的定位;

(3)如果各函数之间没有直接或间接的调用关系,则其局部变量空间便可覆盖。

正是由于以上的原因,在Keil C51环境下,纯粹的函数如果不加处理(如增加一个模拟栈),是无法重入的。举个例子:

void TaskA(void* pd)

{

int a;

//其他一些变量定义

 

do{

//实际的用户任务处理代码

}while(1);

}

 

void TaskB(void* pd)

{

int b;

//其他一些变量定义

 

do{

func();

//其他实际的用户任务处理代码

}while(1);

}

 

void func()

{

int c;

//其他变量的定义

 

//函数的处理代码

}

 

在上面的代码中,TaskA与TaskB并不存在直接或间接的调用关系,因而它们的局部变量a与b便是可以被互相覆盖的,即它们可能都被定位于某一个相同的RAM空间。这样,当TaskA运行一段时间,改变了a后,TaskB取得CPU控制权并运行时,便可能会改变b。由于a和b指向相同的RAM空间,导致TaskA重新取得CPU控制权时,a的值已经改变,从而导致程序运行不正确,反过来亦然。另一方面,func()与TaskB有直接的调用关系,因而其局部变量b与c不会被互相覆盖,但也不能保证func的局部变量c不会与TaskA或其他任务的局部变量形成可覆盖关系。

 

根据上述分析我们很容易就能够判断出TaskA和TaskB这两个函数是不可重入的(当然,func也不可重入)。那么如何让函数成为可重入函数呢?C51编译器采用了一个扩展关键字reentrant作为定义函数时的选项,需要将一个函数定义为可重入函数时,只要在函数后面加上关键字reentrant即可。

 

与非可重入函数的参数传递和局部变量的存储分配方法不同,C51编译器为可重入函数生成一个模拟栈(相对于系统堆栈或是硬件堆栈来说),通过这个模拟栈来完成参数传递和存放局部变量。模拟栈以全局变量?C_IBP、?C_PBP和?C_XBP作为栈指针(系统堆栈栈顶指针为SP),这些变量定义在DATA地址空间,并且可在文件startup.a51中进行初始化。根据编译时采用的存储器模式,模拟栈区可位于内部(IDATA)或外部(PDATA或XDATA)存储器中。如表1所示:

 

存储模式

栈指针

栈区域

Small

?C_IBP(1字节)

间接访问的内部数据存储器(IDATA),栈区最大为256字节

Compact

?C_PBP(1字节)

分页寻址的外部数据存储器(PDATA),栈区最大为256字节

Large

?C_XBP(2字节)

外部数据存储器(XDATA),栈区最大为64K

表1

注意:51系列单片机的系统堆栈(也叫硬件堆栈或常规栈)总是位于内部数据存储器中(SP为 8位寄存器,只能指向内部),而且是“向上生长”型的(从低地址向高地址),而模拟栈是“向下生长”型的。

 

<!--[if !supportLists]-->2、 <!--[endif]-->可重入函数参数传递过程剖析

在进入剖析之前,先简单讲讲c51函数调用时参数是如何传递的。简单来说,参数主要是通过寄存器R1~R7来传递的,如果在调用时,参数无寄存器可用或是采用了编译控制指令“NOREGPARMS”,则参数的传递将发生在固定的存储器区域,该存储器区域称为参数传递段,其地址空间取决于编译时所选择的存储器模式。利用51单片机的工作寄存器最多传递3个参数,如表2所示。

 

传递的参数

char、1字节指针

int、2字节指针

long、float

一般指针

第一个参数

R7

R6,R7

R4~R7

R1,R2,R3

第二个参数

R5

R4,R5

R4~R7

R1,R2,R3

第三个参数

R3

R2,R3

R1,R2,R3

表二

举两个例子:

func1(int a):“a”是第一个参数,在R6,R7中传递;

func2(int b,int c, int *d):“b”在R6,R7中传递,“c”在R4,R5中传递,“*d”则在R1,R2,R3中传递。

至于函数的返回值通过哪些寄存器或是什么方法传递这里就不说了,大家可以看看c51的相关文档或是书籍。

 

好了,接下来我们开始剖析一个简单的程序,代码如下:

int fun(char a, char b, char c, char d ) reentrant //为了分析简单,参数都是char型;

{

int j1,j2;

 

j1 = a + b + c +d;

j2 = j1 + 10;

return j2;

}

 

main()

{

int i;

i = fun(1,2,3,4);

}

 

程序很简单,废话少说,下面跟我一起看看c51翻译成的汇编语言是什么样子的。

main()

{

int i;

i = fun(1,2,3,4);

MOV DPTR,#0xFFFF ; 模拟栈指针C?XBP最初指向0xFFFF+1

LCALL C?ADDXBP(C:00A6) ;调用C?ADDXBP子程序,调整模拟栈指针C?XBP

;指向0xFFFF

MOV A,#0x04 ;无寄存器可用,第四个参数直接压入模拟栈

MOVX @DPTR,A ;

MOV R3,#0x03 ;参数3通过R3传递,见表2

MOV R5,#0x02 ;参数2过R5传递,见表2

MOV R7,#0x01 ;参数1通过R7传递,见表2

LCALL fun(C:0003) ;调用fun函数

MOV DPTR,#C_STARTUP(0x0000) ; fun函数返回值(int型)通过R6,R7传递回来

;并存储在外部数据存储器0x0000和0x0001处

;(int型为两个字节)

MOV A,R6

MOVX @DPTR,A

INC DPTR

MOV A,R7

MOVX @DPTR,A

}

RET ;main返回

 

说明:模拟栈指针最初在startup.a51中初始化为0xFFFF+1;由以上汇编代码可以看出参数是从右往左扫描的。

 

接下来看看fun的汇编代码:(很长,大家耐心看吧,有些可以跳过的)

 

C:0003

MOV DPTR,#0xFFFF

LCALL C?ADDXBP(C:00A6) ;调整模拟栈指针C?XBP=C?XBP-1

MOV A,R3

MOVX @DPTR,A ;R3中的值(参数3)压入模拟栈

MOV DPTR,#0xFFFF

LCALL C?ADDXBP(C:00A6) ;调整模拟栈指针C?XBP=C?XBP-1

MOV A,R5

MOVX @DPTR,A ;R5中的值(参数2)压入模拟栈

MOV DPTR,#0xFFFF

LCALL C?ADDXBP(C:00A6) ;调整模拟栈指针C?XBP=C?XBP-1

MOV A,R7

MOVX @DPTR,A ;R7中的值(参数1)压入模拟栈

MOV DPTR,#0xFFFC

LCALL C?ADDXBP(C:00A6) ;继续调整模拟栈指针C?XBP=C?XBP-4,为放两个

;局部int变量做准备

j1 = a + b + c +d;

MOV DPTR,#0x0005

LCALL C?XBPOFF(C:00CA) ;通过C?XBP的值调整DPTR使其指向模拟栈中第

;一个参数,此时DPTR=0xFFFF

;注意:C?XBPOFF不改变C?XBP的值

MOVX A,@DPTR

MOV R7,A ;取出参数1

MOV A,R7

。。。。。。

。。。。。。;省略,完成取参数2,取参数3,取参数4并相加

。。。。。。

MOV DPH(0x83),?C_XBP(0x08)

MOV DPL(0x82),0x09 ;0x09就是?C_XBP+1

MOV A, R6

MOVX @DPTR,A

INC DPTR

MOV A,R7

MOVX @DPTR,A ;计算结果j1压入模拟栈

 

j2 = j1 + 10;

。。。。。。

。。。。。。

。。。。。。;省略,完成j2=j1+10,并把计算结果j1压入模拟栈

 

return j2;

MOV DPH(0x83),?C_XBP(0x08)

MOV DPL(0x82),0x09

INC DPTR

INC DPTR

MOVX A,@DPTR

MOV R6,A

INC DPTR

MOVX A,@DPTR

MOV R7,A ;从模拟栈取出j2送入R6,R7

}

MOV DPTR,#?C_XBP(0x0008)

LCALL C?ADDXBP(C:00A6) ;fun要返回,释放模拟栈,使C_XBP指向0xffff

RET

 

说明:模拟栈结构如下

参数4

参数3

参数2

参数1

j1低字节

j1高字节

J2低字节

J2高字节

 

接下来说明两个重点子函数C_ADDXBP和C_XBPOFF

C?ADDXBP:

MOV A,0x09 ;0x09即为C_XBP

ADD A,DPL(0x82) ;以下到第一个RET之前即完成:C_XBP+DPTR

MOV DPL(0x82),A

MOV A,?C_XBP(0x08)

ADDC A,DPH(0x83)

MOV DPH(0x83),A

CJNE A,?C_XBP(0x08),C:00B9

MOV 0x09,DPL(0x82)

RET

 

C:00B9

JBC EA(0xA8.7),C:00C2 ;中断开着吗?开着就把它关了(清0),然后跳到C:00C2

MOV 0x09,DPL(0x82) ;中断本来就关着,安全,下面的行动不会被打断,把新

;的模拟栈指针赋给C_XBP

MOV ?C_XBP(0x08),A

RET

 

C:00C2

MOV 0x09,DPL(0x82)

MOV ?C_XBP(0x08),A

SETB EA(0xA8.7) ;开中断

RET

C?XBPOFF: ;此函数的功能一看就明白,即完成DPTR=C_XBP+DPTR

MOV A,0x09

ADD A,DPL(0x82)

MOV DPL(0x82),A

MOV A,?C_XBP(0x08)

ADDC A,DPH(0x83)

MOV DPH(0x83),A

RET

 

终于到尾声了,最后重点说明啦~~~

模拟堆栈是向下生长的,C_XBP最初等于0xffff+1,那么请看下面这句

MOV DPTR,#0xFFFF

LCALL C?ADDXBP(C:00A6)

(0xffff+1)+0xffff = 0xffff

即C_XBP -1;

 

再看

MOV DPTR,#0xFFFE

LCALL C?ADDXBP(C:00A6)

即C_XBP-2

 

再看

MOV DPTR,#0xFFFE

LCALL C?ADDXBP(C:00A6)

即C_XBP-3

。。。

其实是这样:加0xffff相当与减1,加0xfffe相当与减2,加0xfffd相当于减4。。。。。。为啥,就不用说了吧:)

 

结束语:

经过了几天的研究,终于写了个总结报告,算是自己的一点小小成就吧,错误之处在所难免,希望能够同大家一起讨论问题,共同进步。

 

 

参考文献:

1、徐爱钧,彭秀华 《单片机高级语言C51windows环境编程与应用》电子工业出版社 2001

2、彭光红,构造一个51单片机的实时操作系统。

 

附录:

在其它环境下(比如PC,比如ARM),函数重入的问题一般不是要特别注意的问题.只要你没有使用static变量,或者指向static变量的指针,一般情况下,函数自然而然地就是可重入的.

但C51不一样,如果你不特别设计你的函数,它就是不可重入的.

引起这个差别的原因在于:一般的C编译器(或者更确切点地说:基于一般的处理器上的C编译器),其函数的局部变量是存放于堆栈中的,而C51是存放于一个可覆盖的(数据)段中的.

至于C51这样做的原因,不是象有些人说的那样,为了节约内存.事实上,这样做根本节约不了内存.理由如下:

1) 如果一个函数func1调用另一个函数func2,那么func1,func2的局部变量根本就不能是同一块内存.C51还是要为他们分配不同的RAM.这跟使用堆栈相比,节约不了内存.

2) 如果func1,func2不是在一个调用链上,那么C51可以通过覆盖分析,让它们的局部变量共享相同的内存地址.但这样也不会比使用堆栈节约内存.因为既然它们是在不同的调用链上,那么当其中一个函数运行时,那么另外一个函数必然不在其生命期内,它所占用的堆栈也已释放,归还给系统.

真实的原因(C51使用覆盖段作为局部变量的存放地的原因)是:

51的指令系统没有一个有效的相对寻址(变址寻址)的指令,这使得使用堆栈作为变量的代价太过昂贵.

使用堆栈存放变量的一般做法是:

进入函数时,保留一段堆栈空间,作为变量的存放空间,用一个可作为基址寻址的寄存器指向这个空间,通过加上一个偏移量,就可以访问不同的变量了.

例如: MOV EAX, [EBP + 14];X86指令

LDR R0, [R12, #14];ARM指令

都可以很好的解决这个问题.

但51缺少这样的指令.

*其实,51中还是有2个可变址寻址的指令的,但不适合访问堆栈的局部变量这样的场合.

MOVC A, @A+DPTR

MOVC A, @A+PC

所以,C51有个特别的关键字: reentrant 用来解决函数重入的问题

 

转发自:https://blog.csdn.net/hjhcs121/article/details/8732180

posted on 2019-12-15 21:00  TotallyNewUser  阅读(479)  评论(0编辑  收藏  举报