[题解]CF659G Fence Divercity
确实太颓了,在 csp 前教练给的题单里的题,快退役了才做/ll
思路
显然切除的一定是一个区间。其次若对于一列达到了他可行的最小的切除高度,那么切得更多一定合法,于是考虑求出这个值。
仔细观察发现,第 \(i\) 列至少要把第 \(\min(h_{i - 1},h_i,h_{i + 1})\) 行及以上切掉(若 \(i - 1,i + 1\) 列都要切)。令这个值为 \(a_i\)。
枚举区间右端点 \(r\),所有合法区间的答案为:
\[\sum_{l < r}{((\min(h_l,h_{l + 1}) - 1) \times (\min(h_r,h_{r - 1}) - 1) \times \prod_{l < i < r}{(a_i - 1)}})
\]
考虑对 \(a_i - 1\) 做前缀积:\(s_i = \prod_{j \leq i}{(a_i - 1)}\)。得:
\[\sum_{l < r}(\min(h_l,h_{l + 1} - 1) \times (\min(h_r,h_{r - 1}) - 1) \times \frac{s_{r - 1}}{s_{l}})\\
\Rightarrow \sum_{l < r}{(\frac{\min(h_l,h_{l + 1}) - 1}{s_l}) \times (\min(h_r,h_{r - 1}) - 1) \times s_{r - 1}}
\]
考虑对 \(\frac{\min(h_i,h_{i + 1}) - 1}{s_l}\) 做前缀和,记为 \(S_i\),得:
\[(\min(h_r,h_{r + 1}) - 1) \times s_{r - 1} \times S_{r - 1}
\]
需要注意 \(h_i = 1\) 的情况,以及在上述情况的基础上加上 \(r\) 单独为一段的情况。
Code
#include <bits/stdc++.h>
#define re register
#define int long long
#define Add(a,b) (((a) + (b)) % mod)
#define Mul(a,b) ((a) * (b) % mod)
#define chAdd(a,b) (a = Add(a,b))
#define chMul(a,b) (a = Mul(a,b))
using namespace std;
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int inf = 1e9 + 10;
int n,ans;
int arr[N];
inline int read(){
int r = 0,w = 1;
char c = getchar();
while (c < '0' || c > '9'){
if (c == '-') w = -1;
c = getchar();
}
while (c >= '0' && c <= '9'){
r = (r << 3) + (r << 1) + (c ^ 48);
c = getchar();
}
return r * w;
}
inline int qmi(int a,int b){
int res = 1;
while (b){
if (b & 1) chMul(res,a);
chMul(a,a); b >>= 1;
} return res;
}
signed main(){
n = read();
for (re int i = 1;i <= n;i++) arr[i] = read();
for (re int i = 1,s = 1,sum = 0;i <= n;i++){
int v1 = inf,v2 = inf;
if (arr[i - 1] > 1) v1 = arr[i - 1];
if (arr[i + 1] > 1) v2 = arr[i + 1];
chAdd(ans,Add(arr[i] - 1,Mul(Mul(s,sum),min(arr[i],v1) - 1)));
chMul(s,min({v1,arr[i],v2}) - 1);
if (!s) s = 1,sum = 0;
else chAdd(sum,Mul(qmi(s,mod - 2),min(arr[i],v2) - 1));
} printf("%lld",ans);
return 0;
}

浙公网安备 33010602011771号