[题解]P3628 [APIO2010] 特别行动队
思路
我们定义 \(dp_i\) 为选取前 \(i\) 个人所得到的最大的价值。
那么,我们能得出一个很简单的状态转移方程:
\[ dp_i = \max(dp_j + a \times (\sum_{k = j + 1}^{i}x_i)^2 + b \times (\sum_{k = j + 1}^{i}x_i) + c)
\]
用前缀和优化,得:
\[ dp_i = \max(dp_j + a \times (sx_i - sx_{j})^2 + b \times (sx_i - sx_j) + c)
\]
然后,拆开括号,得:
\[ dp_i = \max(dp_j + a \times sx_i^2 - 2a \times sx_i \times sx_j + a \times sx_j^2 + b \times sx_i - b \times sx_j + c)
\]
如果当前选 \(j_2\) 优于 \(j_1\),那么,当且仅当满足如下条件:
\[ dp_{j_1} + a \times sx_i^2 - 2a \times sx_i \times sx_{j_1} + a \times sx_{j_1}^2 + b \times sx_i - b \times sx_{j_1} + c <\\ dp_{j_2} + a \times sx_i^2 - 2a \times sx_i \times sx_{j_2} + a \times sx_{j_2}^2 + b \times sx_i - b \times sx_{j_2} + c
\]
化简得:
\[ 2a \times sx_i < \frac{(dp_{j_2} + a \times dp_{j_2}^2 - b \times sx_{j_2}) - (dp_{j_1} + a \times dp_{j_1}^2 - b \times sx_{j_1})}{sx_{j_2} - sx_{j_2}}
\]
令:
- \(2a \times sx_i\) 为 \(K\)。
- \(sx_x\) 为 \(X(x)\)。
- \(dp_x + a \times sx_x^2 - b \times sx_x\) 为 \(Y(x)\)。
那么,得:
\[ K < \frac{Y(j_2) - Y(j_1)}{X(j_2) - X(j_1)}
\]
那么,要使答案尽可能的大,最有抉择点必定在上凸包上,用斜率优化 DP 维护即可。
Code
#include <bits/stdc++.h>
#define int long long
#define re register
using namespace std;
const int N = 1e6 + 10;
int n,a,b,c,hh = 1,tt = 1;
int arr[N],dp[N],q[N];
inline int read(){
int r = 0,w = 1;
char c = getchar();
while (c < '0' || c > '9'){
if (c == '-') w = -1;
c = getchar();
}
while (c >= '0' && c <= '9'){
r = (r << 3) + (r << 1) + (c ^ 48);
c = getchar();
}
return r * w;
}
inline int K(int i){
return 2 * a * arr[i];
}
inline int X(int i){
return arr[i];
}
inline int Y(int i){
return dp[i] + a * arr[i] * arr[i] - b * arr[i];
}
inline double sl(int i,int j){
return 1.0 * (Y(i) - Y(j)) / (X(i) - X(j));
}
signed main(){
n = read();
a = read();
b = read();
c = read();
for (re int i = 1;i <= n;i++) arr[i] = arr[i - 1] + read();
for (re int i = 1;i <= n;i++){
while (hh < tt && K(i) <= sl(q[hh],q[hh + 1])) hh++;
int j = q[hh];
dp[i] = dp[j] + a * (arr[i] - arr[j]) * (arr[i] - arr[j]) + b * (arr[i] - arr[j]) + c;
while (hh < tt && sl(q[tt],q[tt - 1]) <= sl(i,q[tt - 1])) tt--;
q[++tt] = i;
}
printf("%lld",dp[n]);
return 0;
}

浙公网安备 33010602011771号