[题解]P3628 [APIO2010] 特别行动队

思路

我们定义 \(dp_i\) 为选取前 \(i\) 个人所得到的最大的价值。

那么,我们能得出一个很简单的状态转移方程:

\[ dp_i = \max(dp_j + a \times (\sum_{k = j + 1}^{i}x_i)^2 + b \times (\sum_{k = j + 1}^{i}x_i) + c) \]

用前缀和优化,得:

\[ dp_i = \max(dp_j + a \times (sx_i - sx_{j})^2 + b \times (sx_i - sx_j) + c) \]

然后,拆开括号,得:

\[ dp_i = \max(dp_j + a \times sx_i^2 - 2a \times sx_i \times sx_j + a \times sx_j^2 + b \times sx_i - b \times sx_j + c) \]

如果当前选 \(j_2\) 优于 \(j_1\),那么,当且仅当满足如下条件:

\[ dp_{j_1} + a \times sx_i^2 - 2a \times sx_i \times sx_{j_1} + a \times sx_{j_1}^2 + b \times sx_i - b \times sx_{j_1} + c <\\ dp_{j_2} + a \times sx_i^2 - 2a \times sx_i \times sx_{j_2} + a \times sx_{j_2}^2 + b \times sx_i - b \times sx_{j_2} + c \]

化简得:

\[ 2a \times sx_i < \frac{(dp_{j_2} + a \times dp_{j_2}^2 - b \times sx_{j_2}) - (dp_{j_1} + a \times dp_{j_1}^2 - b \times sx_{j_1})}{sx_{j_2} - sx_{j_2}} \]

令:

  1. \(2a \times sx_i\)\(K\)
  2. \(sx_x\)\(X(x)\)
  3. \(dp_x + a \times sx_x^2 - b \times sx_x\)\(Y(x)\)

那么,得:

\[ K < \frac{Y(j_2) - Y(j_1)}{X(j_2) - X(j_1)} \]

那么,要使答案尽可能的大,最有抉择点必定在上凸包上,用斜率优化 DP 维护即可。

Code

#include <bits/stdc++.h>  
#define int long long  
#define re register  
  
using namespace std;  
  
const int N = 1e6 + 10;  
int n,a,b,c,hh = 1,tt = 1;  
int arr[N],dp[N],q[N];  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
inline int K(int i){  
    return 2 * a * arr[i];  
}  
  
inline int X(int i){  
    return arr[i];  
}  
  
inline int Y(int i){  
    return dp[i] + a * arr[i] * arr[i] - b * arr[i];  
}  
  
inline double sl(int i,int j){  
    return 1.0 * (Y(i) - Y(j)) / (X(i) - X(j));  
}  
  
signed main(){  
    n = read();  
    a = read();  
    b = read();  
    c = read();  
    for (re int i = 1;i <= n;i++) arr[i] = arr[i - 1] + read();  
    for (re int i = 1;i <= n;i++){  
        while (hh < tt && K(i) <= sl(q[hh],q[hh + 1])) hh++;  
        int j = q[hh];  
        dp[i] = dp[j] + a * (arr[i] - arr[j]) * (arr[i] - arr[j]) + b * (arr[i] - arr[j]) + c;  
        while (hh < tt && sl(q[tt],q[tt - 1]) <= sl(i,q[tt - 1])) tt--;  
        q[++tt] = i;  
    }  
    printf("%lld",dp[n]);  
    return 0;  
}  
posted @ 2024-06-26 12:34  WBIKPS  阅读(19)  评论(0)    收藏  举报