[题解]GYM 101555B Mega Inversions

题意

给定一个长度为 \(n\) 的序列 \(a\)

求其中三元逆序对的数量。(即 \(i < j < k\)\(a_i > a_j > a_k\) 的数量)

思路

考虑枚举中间值。

假设当前枚举到 \(i\),那么,当前的 \(i\) 对于答案的贡献就是 \(a_j > a_i\) 的数量乘以 \(a_k < a_i\) 的数量。(其中 \(j < i < k\)

那么,考虑使用权值树状数组维护每一个值的数量。

即,每一次枚举都能保证时间复杂度为 \(\Theta(\log n)\)

总时间复杂度:\(\Theta(n \log n)\)

Code

#include <bits/stdc++.h>  
#define int long long  
#define re register  
  
using namespace std;  
  
const int N = 1e5 + 10;  
int n,ans;  
int arr[N];  
  
struct BIT{  
    int tr[N];  
  
    inline int lowbit(int x){  
        return x & -x;  
    }  
  
    inline void modify_pre(int x,int k){//维护前缀和   
        for (re int i = x;i <= n;i += lowbit(i)) tr[i] += k;  
    }  
  
    inline void modify_nxt(int x,int k){//维护后缀和   
        for (re int i = x;i;i -= lowbit(i)) tr[i] += k;  
    }  
  
    inline int query_pre(int x){//查询前缀和   
        int res = 0;  
        for (re int i = x;i;i -= lowbit(i)) res += tr[i];  
        return res;  
    }  
  
    inline int query_nxt(int x){//维护后缀和   
        int res = 0;  
        for (re int i = x;i <= n;i += lowbit(i)) res += tr[i];  
        return res;  
    }  
}tree_pre,tree_nxt;  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
signed main(){  
    n = read();  
    for (re int i = 1;i <= n;i++){  
        arr[i] = read();  
        tree_nxt.modify_pre(arr[i],1);  
    }  
    for (re int i = 1;i <= n;i++){  
        tree_nxt.modify_pre(arr[i],-1);  
        ans += (tree_pre.query_nxt(arr[i] + 1) * tree_nxt.query_pre(arr[i] - 1));  
        tree_pre.modify_nxt(arr[i],1);  
    }  
    printf("%lld",ans);  
    return 0;  
}  
posted @ 2024-06-26 12:34  WBIKPS  阅读(25)  评论(0)    收藏  举报