[题解]CF1811D Umka and a Long Flight

思路

假设原题目中的 \(n\) 在本文中为 \(num\),则原长方形的长 \(m = f_{num + 1}\) 和宽 \(n = f_{num}\)

显然对于最初始的长方形,显然是要将一个 \(f_{num} \times f_{num}\) 的长方形丢进去的,并且要么放最左边,要么放在最右边。因为对于当前的 \(m = f_{num + 1} = f_{num} + f_{num - 1}\),减去当前要放进去的方块,剩余的长只剩下 \(f_{num - 1}\),而 \(f_{num - 1} \leq f_{num}\),所以额外的那一个点要么会使放在左边的不行,要么是放在右边的不行。

发现放置一个方块后,其余的情况是类似的直接递归处理即可。每一次递归更新 \(m,n\) 以及额外点的新位置即可。(无解的情况是额外的点既会影响放在左边的情况,也会影响放在右边的情况)

需要注意的是 \(m\) 被减后,\(n > m\),所以需要将整个图形顺时针或逆时针转 \(90 ^\circ\)

Code

#include <bits/stdc++.h>  
#define re register  
#define int long long  
  
using namespace std;  
  
const int N = 110;  
int num,n,m,x,y;  
int f[N] = {1,1};  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
inline void init(){  
    for (re int i = 2;i <= 50;i++) f[i] = f[i - 1] + f[i - 2];  
}  
  
inline bool dfs(int u,int n,int m,int x,int y){  
    if (!u) return true;  
    if (y > f[u]){  
        m -= f[u];  
        y -= f[u];  
        return dfs(u - 1,m,n,y,n - x + 1);  
    }  
    if (y < m - f[u] + 1){  
        m -= f[u];  
        return dfs(u - 1,m,n,y,n - x + 1);  
    }  
    return false;  
}  
  
inline void solve(){  
    num = read();  
    n = f[num];  
    m = f[num + 1];  
    x = read();  
    y = read();  
    if (dfs(num,n,m,x,y)) puts("YES");  
    else puts("NO");  
}  
  
signed main(){  
    init();  
    int T;  
    T = read();  
    while (T--) solve();  
    return 0;  
}  
posted @ 2024-06-25 12:27  WBIKPS  阅读(27)  评论(0)    收藏  举报