[题解]CF1791E Negatives and Positives

题意

给定一个长度为 \(n\) 的序列 \(a\),你可以选定一个数 \(i(1 \leq i < n)\),使得 \(a_i = -a_i\)\(a_{i + 1} = -a_{i + 1}\)

问:进行若干次操作后,算出 \(\max(\sum_{i = 1}^{n}a_i)\)

思路

首先,我们能得出一个结论,对于每一个 \(a_i\)\(a_j\),我们都可以使 \(a_i = -a_i\)\(a_j = -a_j\)

我们需要尽可能的使 \(a\) 中的负数全部取反。

这时候,我们需要分类讨论:

  1. 负数个数为偶数,那么结果为 \(\sum_{i = 1}^{n}|a_i|\)
  2. 负数个数为负数,那么需要判断负数最大值的绝对值和正数最小值 的大小关系。

Code

#include <bits/stdc++.h>  
#define int long long  
#define re register  
  
using namespace std;  
  
const int N = 2e5 + 10,inf = 1e9 + 10;  
int T,n;  
int arr[N];  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
signed main(){  
    T = read();  
    while (T--){  
        int Mina = inf,Maxb = -inf;  
        int sum = 0,len = 0;  
        n = read();  
        for (re int i = 1;i <= n;i++){  
            arr[i] = read();  
            sum += abs(arr[i]);//首先先把总和设为 abs(arr)   
            if (arr[i] < 0){  
                len++;  
                Maxb = max(Maxb,arr[i]);  
            }  
            else Mina = min(Mina,arr[i]);  
        }  
        //如果 len 为偶数 max(sum(arr)) 就为 sum   
        if (len & 1){  
            if (Maxb == -inf);//判断特判没有正数和没有负数的情况   
            else if (Mina == inf) sum += 2 * Maxb;  
            else if (abs(Maxb) < abs(Mina)) sum -= 2 * abs(Maxb);//使负数不变   
            else sum -= 2 * abs(Mina);//使正数不变   
        }  
        printf("%lld\n",sum);  
    }  
    return 0;  
}  
posted @ 2024-06-25 12:27  WBIKPS  阅读(35)  评论(0)    收藏  举报