[题解]CF1725H Hot Black Hot White

思路

首先转化原式为:

\[(a_i + a_j) \times (a_i + a_j + 1) \equiv z \pmod 3 \]

考虑对 \(a_i \bmod 3,a_j \bmod 3\) 进行分讨:

\(a_i/a_j\) \(0\) \(1\) \(2\)
\(0\) \(0\) \(1\) \(1\)
\(1\) \(1\) \(2\) \(2\)
\(2\) \(1\) \(2\) \(2\)

发现,只有当 \(a_i = a_j = 0\) 时,原式为 \(0\)。于是记 \(a\)\(0\) 的数量为 \(x\)

如果 \(x \geq \frac{n}{2}\),令 \(z = 2\),将 \(\frac{n}{2}\)\(0\) 放在一组,其余放在另一组。

否则,令 \(z = 0\),将所有 \(0\) 都丢入同一组,其余随便分即可。

Code

#include <bits/stdc++.h>
#define re register

using namespace std;

const int N = 1e5 + 10;
int n,num;
int arr[N];

inline int read(){
    int r = 0,w = 1;
    char c = getchar();
    while (c < '0' || c > '9'){
        if (c == '-') w = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9'){
        r = (r << 3) + (r << 1) + (c ^ 48);
        c = getchar();
    }
    return r * w;
}

int main(){
    n = read();
    for (re int i = 1;i <= n;i++){
        arr[i] = read() % 3; num += (!arr[i]);
    }
    if (num * 2 >= n){
        int cnt = 0;
        puts("2");
        for (re int i = 1;i <= n;i++){
            if (!arr[i]){
                if (cnt < n / 2) putchar('0');
                else putchar('1');
                cnt++;
            }
            else putchar('1');
        }
    }
    else{
        int cnt = 0;
        puts("0");
        for (re int i = 1;i <= n;i++){
            if (!arr[i]) putchar('0');
            else{
                if (cnt + num < n / 2) putchar('0');
                else putchar('1');
                cnt++;
            }
        }
    }
    return 0;
}
posted @ 2024-06-24 12:22  WBIKPS  阅读(17)  评论(0)    收藏  举报