[题解]CF514D R2D2 and Droid Army
思路
首先,可以转化题意,找到一个极长的区间 \([l,r]\) 使得(其中 \(mx_i\) 表示 \([l,r]\) 区间中属性 \(i\) 的最大值):
\[
\sum_{i = 1}^{m}mx_i \leq k
\]
显然对于这个东西当 \(l,r\) 发生移动时,是极其好维护的,所以想到双指针。
因为 \(m \leq 5\),所以我们可以直接开 \(m\) 个 ST 表维护即可。
Code
#include <bits/stdc++.h>
#define re register
#define int long long
#define pot(x) (1 << x)
using namespace std;
const int N = 1e5 + 10,M = 10,K = 20;
int n,m,k,ans;
int lg[N],a[N];
int arr[N][M];
inline int read(){
int r = 0,w = 1;
char c = getchar();
while (c < '0' || c > '9'){
if (c == '-') w = -1;
c = getchar();
}
while (c >= '0' && c <= '9'){
r = (r << 3) + (r << 1) + (c ^ 48);
c = getchar();
}
return r * w;
}
inline void init(){
for (re int i = 2;i <= n;i++) lg[i] = lg[i / 2] + 1;
}
struct ST{
int dp[N][K];
inline void init(){
for (re int j = 1;j <= lg[n];j++){
for (re int i = 1;i + pot(j) - 1 <= n;i++) dp[i][j] = max(dp[i][j - 1],dp[i + pot(j - 1)][j - 1]);
}
}
inline int query(int l,int r){
int k = lg[r - l + 1];
return max(dp[l][k],dp[r - pot(k) + 1][k]);
}
}st[M];
inline bool check(int l,int r){
int sum = 0;
for (re int i = 1;i <= m;i++) sum += st[i].query(l,r);
return (sum <= k);
}
signed main(){
n = read();
m = read();
k = read();
init();
for (re int i = 1;i <= n;i++){
for (re int j = 1;j <= m;j++) arr[i][j] = read();
}
for (re int j = 1;j <= m;j++){
for (re int i = 1;i <= n;i++) st[j].dp[i][0] = arr[i][j];
st[j].init();
}
for (re int l = 1,r = 1;r <= n;r++){
while (l <= r && !check(l,r)) l++;
if (ans < r - l + 1){
ans = r - l + 1;
for (re int i = 1;i <= m;i++) a[i] = st[i].query(l,r);
}
}
for (re int i = 1;i <= m;i++) printf("%lld ",a[i]);
return 0;
}

浙公网安备 33010602011771号