[题解]AT_abc325_f [ABC325F] Sensor Optimization Dilemma
思路
定义 \(dp_{i,j,k} = 0/1\) 表示用 \(i\) 个 1 号传感器,\(j\) 个 2 号传感器 不能/能 监控到前 \(i\) 段。
显然有:
\[
dp_{i,j,k} = \max_{0 \leq p \leq j \wedge 0 \leq q \leq k \wedge p \times l_1 + q \times l_2 \geq d_i}\{dp_{i - 1,j - p,k - q}\}
\]
但是这样 \(\Theta(nk^4)\) 的复杂度是不优秀的,所以考虑优化。
发现这个状态只能表示一个状态是否可行,太浪费了,于是考虑将 \(dp_{i,j,k}\) 的 \(k\) 降到结果上。
即定义 \(dp_{i,j} = k\) 表示用 \(j\) 个 1 号传感器,最少使用 \(k\) 个 2 号传感器就可监控到前 \(i\) 段。
显然有:
\[
dp_{i,j} = \min_{1 \leq k \leq j}\{dp_{i - 1,j - k} + \lceil \frac{\max(d_i - l_1 \times k,0)}{l_2} \rceil\}
\]
答案显然是:
\[
\min_{dp_{n,i} \leq k_2}\{i \times c_1 + dp_{n,i} \times c_2\}
\]
Code
#include <bits/stdc++.h>
#define re register
#define int long long
using namespace std;
const int N = 110,M = 1010,inf = 1e18 + 10;
int n,ans = inf;
int arr[N];
int w[2],v[2],l[2];
int dp[N][M];
inline int read(){
int r = 0,w = 1;
char c = getchar();
while (c < '0' || c > '9'){
if (c == '-') w = -1;
c = getchar();
}
while (c >= '0' && c <= '9'){
r = (r << 3) + (r << 1) + (c ^ 48);
c = getchar();
}
return r * w;
}
inline int up(int a,int b){
if (a % b == 0) return a / b;
return a / b + 1;
}
signed main(){
n = read();
for (re int i = 1;i <= n;i++) arr[i] = read();
for (re int i = 0;i <= 1;i++){
w[i] = read();
v[i] = read();
l[i] = read();
}
for (re int i = 1;i <= n;i++){
for (re int j = 0;j <= l[0];j++){
dp[i][j] = inf;
for (re int k = 0;k <= j;k++) dp[i][j] = min(dp[i][j],dp[i - 1][j - k] + up(max(arr[i] - k * w[0],0ll),w[1]));
}
}
for (re int i = 0;i <= l[0];i++){
if (dp[n][i] <= l[1]) ans = min(ans,i * v[0] + dp[n][i] * v[1]);
}
if (ans == inf) puts("-1");
else printf("%lld",ans);
return 0;
}

浙公网安备 33010602011771号