[题解]AT_abc325_f [ABC325F] Sensor Optimization Dilemma

思路

定义 \(dp_{i,j,k} = 0/1\) 表示用 \(i\) 个 1 号传感器,\(j\) 个 2 号传感器 不能/能 监控到前 \(i\) 段。

显然有:

\[ dp_{i,j,k} = \max_{0 \leq p \leq j \wedge 0 \leq q \leq k \wedge p \times l_1 + q \times l_2 \geq d_i}\{dp_{i - 1,j - p,k - q}\} \]

但是这样 \(\Theta(nk^4)\) 的复杂度是不优秀的,所以考虑优化。

发现这个状态只能表示一个状态是否可行,太浪费了,于是考虑将 \(dp_{i,j,k}\)\(k\) 降到结果上。

即定义 \(dp_{i,j} = k\) 表示用 \(j\) 个 1 号传感器,最少使用 \(k\) 个 2 号传感器就可监控到前 \(i\) 段。

显然有:

\[ dp_{i,j} = \min_{1 \leq k \leq j}\{dp_{i - 1,j - k} + \lceil \frac{\max(d_i - l_1 \times k,0)}{l_2} \rceil\} \]

答案显然是:

\[ \min_{dp_{n,i} \leq k_2}\{i \times c_1 + dp_{n,i} \times c_2\} \]

Code

#include <bits/stdc++.h>  
#define re register  
#define int long long  
  
using namespace std;  
  
const int N = 110,M = 1010,inf = 1e18 + 10;  
int n,ans = inf;  
int arr[N];  
int w[2],v[2],l[2];  
int dp[N][M];  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
inline int up(int a,int b){  
    if (a % b == 0) return a / b;  
    return a / b + 1;  
}  
  
signed main(){  
    n = read();  
    for (re int i = 1;i <= n;i++) arr[i] = read();  
    for (re int i = 0;i <= 1;i++){  
        w[i] = read();  
        v[i] = read();  
        l[i] = read();  
    }  
    for (re int i = 1;i <= n;i++){  
        for (re int j = 0;j <= l[0];j++){  
            dp[i][j] = inf;  
            for (re int k = 0;k <= j;k++) dp[i][j] = min(dp[i][j],dp[i - 1][j - k] + up(max(arr[i] - k * w[0],0ll),w[1]));  
        }  
    }  
    for (re int i = 0;i <= l[0];i++){  
        if (dp[n][i] <= l[1]) ans = min(ans,i * v[0] + dp[n][i] * v[1]);  
    }  
    if (ans == inf) puts("-1");  
    else printf("%lld",ans);  
    return 0;  
}  
posted @ 2024-06-23 00:26  WBIKPS  阅读(18)  评论(0)    收藏  举报