[题解]AT_abc254_d [ABC254D] Together Square

思路

\(f_i\) 表示 \(i\) 最大的完全平方数因子。

那么,现在如果有两个数 \(i,j\),要使 \(i \times j\) 为完全平方数,一定要使 \(\frac{i}{f_i} = \frac{j}{f_j}\)

换句话说,\(i \times j\) 为完全平方数,当且仅当 \(\frac{i}{f_i} = \frac{j}{f_j}\)。因为 \(i \times j = f_i \times \frac{i}{f_i} \times f_j \times \frac{j}{f_j}\),且 \(f_i,f_j\) 均为完全平方数,所以 \(\frac{i}{f_i} \times \frac{j}{f_j}\) 也是完全平方数,所以 \(\frac{i}{f_i} = \frac{j}{f_j}\)

由此,统计 \(\frac{i}{f_i}\) 的数量即可。

Code

#include <bits/stdc++.h>  
#define int long long  
#define re register  
  
using namespace std;  
  
const int N = 2e5 + 10;  
int n,ans;  
int vis[N];  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
inline int f(int x){  
    int res = 0;  
    for (re int i = 1;i * i <= x;i++){  
        if (x % i == 0){  
            int j = x / i;  
            int si = sqrt(i);  
            int sj = sqrt(j);  
            if (si * si == i) res = max(res,i);  
            if (sj * sj == j) res = max(res,j);  
        }  
    }  
    return res;  
}  
  
signed main(){  
    n = read();  
    for (re int i = 1;i <= n;i++) vis[i / f(i)]++;  
    for (re int i = 1;i <= n;i++) ans += vis[i / f(i)];  
    printf("%lld",ans);  
    return 0;  
}  
posted @ 2024-06-22 10:58  WBIKPS  阅读(18)  评论(0)    收藏  举报