random随机数模块

5.15.3 random随机数模块

random 模块方法

方法 描述
seed() 初始化随机数生成器
getstate() 返回捕获生成器当前内部状态的对象。
setstate() state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。
getrandbits(k) 返回具有 k 个随机比特位的非负 Python 整数。 此方法随 MersenneTwister 生成器一起提供,其他一些生成器也可能将其作为 API 的可选部分提供。 在可能的情况下,getrandbits() 会启用 randrange() 来处理任意大的区间。
randrange() 从 range(start, stop, step) 返回一个随机选择的元素。
randint(a, b) 返回随机整数 N 满足 a <= N <= b。
choice(seq) 从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError。
choices(population, weights=None, *, cum_weights=None, k=1) 从 population 中选择替换,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError。
shuffle(x[, random]) 将序列 x 随机打乱位置。
sample(population, k, *, counts=None) 返回从总体序列或集合中选择的唯一元素的 k 长度列表。 用于无重复的随机抽样。
random() 返回 [0.0, 1.0) 范围内的下一个随机浮点数。
uniform() 返回一个随机浮点数 N ,当 a <= b 时 a <= N <= b ,当 b < a 时 b <= N <= a 。
triangular(low, high, mode) 返回一个随机浮点数 N ,使得 low <= N <= high 并在这些边界之间使用指定的 mode 。 low 和 high 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。
betavariate(alpha, beta) Beta 分布。 参数的条件是 alpha > 0 和 beta > 0。 返回值的范围介于 0 和 1 之间。
expovariate(lambd) 指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。
gammavariate() Gamma 分布( 不是伽马函数) 参数的条件是 alpha > 0 和 beta > 0。
gauss(mu, sigma) 正态分布,也称高斯分布。 mu 为平均值,而 sigma 为标准差。 此函数要稍快于下面所定义的 normalvariate() 函数。
lognormvariate(mu, sigma) 对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigma 。 mu 可以是任何值,sigma 必须大于零。
normalvariate(mu, sigma) 正态分布。 mu 是平均值,sigma 是标准差。
vonmisesvariate(mu, kappa) 冯·米塞斯分布。 mu 是平均角度,以弧度表示,介于0和 2pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在 0 到 2pi 的范围内减小到均匀的随机角度。
paretovariate(alpha) 帕累托分布。 alpha 是形状参数。
weibullvariate(alpha, beta) 威布尔分布。 alpha 是比例参数,beta 是形状参数。
import random

#随机小数
print(random.random())      # 大于0且小于1之间的小数
# 0.7664338663654585

print(random.uniform(1,3)) #大于1小于3的小数
1.6270147180533838
#恒富:发红包

#随机整数
# 大于等于1且小于等于5之间的整数
print(random.randint(1,5)) 

# 大于等于1且小于10之间的奇数
print(random.randrange(1,10,2))


#随机选择一个返回
# #1或者23或者[4,5]
print(random.choice([1,'23',[4,5]]))

#随机选择多个返回,返回的个数为函数的第二个参数
# 列表元素任意2个组合
print(random.sample([1,'23',[4,5]],2)) 
# [[4, 5], '23']


#打乱列表顺序
item=[1,3,5,7,9]
random.shuffle(item) # 打乱次序
print(item)
# [5, 1, 3, 7, 9]

random.shuffle(item)
print(item)
# [5, 9, 7, 1, 3]

生成随机验证码

import random

def v_code():

    code = ''
    for i in range(5):

        num=random.randint(0,9)
        alf=chr(random.randint(65,90))
        add=random.choice([num,alf])
        code="".join([code,str(add)])

    return code

print(v_code())
posted @ 2023-04-13 23:07  WNAG_zw  阅读(11)  评论(0)    收藏  举报