1 __author__ = "WSX"
2 import cv2 as cv
3 import numpy as np
4
5 def lapalian_demo(image): #拉普拉斯算子
6 #dst = cv.Laplacian(image, cv.CV_32F) #内置函数来实现
7 #lpls = cv.convertScaleAbs(dst)
8 kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]]) #自定义来实现
9 dst = cv.filter2D(image, cv.CV_32F, kernel=kernel)
10 lpls = cv.convertScaleAbs(dst)
11 cv.imshow("lapalian_demo", lpls)
12
13
14 def sobel_demo(image): #sobel算子
15 grad_x = cv.Scharr(image, cv.CV_32F, 1, 0) #x的一阶导数
16 grad_y = cv.Scharr(image, cv.CV_32F, 0, 1)
17 gradx = cv.convertScaleAbs(grad_x) # 先绝对值 再转到8位图像上
18 grady = cv.convertScaleAbs(grad_y)
19 cv.imshow("gradient-x", gradx) #左右有差异的表现
20 cv.imshow("gradient-y", grady) #上下有差异的表现
21 gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0) #一起表现
22 cv.imshow("gradient", gradxy)
23
24 def main():
25 img = cv.imread("1.JPG")
26 cv.namedWindow("Show", cv.WINDOW_AUTOSIZE)
27 cv.imshow("Show", img)
28 sobel_demo(img)
29
30 cv.waitKey(0)
31 cv.destroyAllWindows()
32
33 main()