# BZOJ 1684: [Usaco2005 Oct]Close Encounter

## 1684: [Usaco2005 Oct]Close Encounter

Time Limit: 5 Sec  Memory Limit: 64 MB

## Description

Lacking even a fifth grade education, the cows are having trouble with a fraction problem from their textbook. Please help them. The problem is simple: Given a properly reduced fraction (i.e., the greatest common divisor of the numerator and denominator is 1, so the fraction cannot be further reduced) find the smallest properly reduced fraction with numerator and denominator in the range 1..32,767 that is closest (but not equal) to the given fraction. 找一个分数它最接近给出一个分数. 你要找的分数的值的范围在1..32767

## Input

* Line 1: Two positive space-separated integers N and D (1 <= N < D <= 32,767), respectively the numerator and denominator of the given fraction

## Output

* Line 1: Two space-separated integers, respectively the numerator and denominator of the smallest, closest fraction different from the input fraction.

2 3

## Sample Output

21845 32767

OUTPUT DETAILS:

21845/32767 = .666676839503.... ~ 0.666666.... = 2/3.

## Source

### 代码  1 /*Author:WNJXYK*/
2 #include<cstdio>
3 using namespace std;
4 int n,m;
5 long double tmp;
6 int ansb,ansa;
7 long double delta=1e30;
8 inline long double abs(long double x){
9     if (x<0) return -x;
10     return x;
11 }
12 int main(){
13     scanf("%d%d",&n,&m);
14     tmp=(long double)n/(long double)m;
15     for (int b=1;b<=32767;b++){
16         int fz=((long double)n/(long double)m*(long double)b);
17         if (abs((long double)(fz-1)/(long double)b-(long double)n/(long double)m)<delta && (fz-1)*m!=n*b){
18                 delta=abs((long double)(fz-1)/(long double)b-(long double)n/(long double)m);
19                 ansa=fz-1;
20                 ansb=b;
21         }
22         if (abs((long double)(fz)/(long double)b-(long double)n/(long double)m)<delta && fz*m!=n*b){
23                 delta=abs((long double)(fz)/(long double)b-(long double)n/(long double)m);
24                 ansa=fz;
25                 ansb=b;
26         }
27         if (abs((long double)(fz+1)/(long double)b-(long double)n/(long double)m)<delta && (1+fz)*m!=n*b){
28             delta=abs((long double)(fz+1)/(long double)b-(long double)n/(long double)m);
29             ansa=fz+1;
30             ansb=b;
31         }
32     }
33     printf("%d %d\n",ansa,ansb);
34     return 0;
35 }
View Code

posted @ 2014-11-04 18:33  WNJXYK  阅读(129)  评论(0编辑  收藏  举报